사인법칙 코사인법칙 도형이 너무 안풀림
게시글 주소: https://orbi.kr/00067985882
계속 보는데도 모르겠고..
어떻게 써야되는지도 모르겠고...
사인코사인법칙을 어떻게 써야되는지를 잘 모르겠는데
여러분은 어떻게 익히셨나요...
그냥 문제 많이 풀다 보면 감이 잡히는 건가요 ㅠㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아직 멀었네요 ㅠㅠ
-
아무리쉬웠다고해도 작수4따리가 풀만한 문제는 아니지안나..
-
지금 무리 친구들 너무 순하고 착해 내가 빌런짓 하지않는이상 반수해서 떠나지 않는이상 뭔가 계속갈듯
-
매우 굶주림 ㅠ 0
굶은 채로 과외 두 개 하고 밥 한 끼 먹고 다시 자다가 깸 지금 동물B 상태임...
-
1.건물 디자인: 경희대 압승 2.쾌적함: 경희대 압승 3.흡연시설: 한양대 압승...
-
뭐지
-
질문 받아요 0
서울대 학부 다니고 있고 전공은 AI입니다 (주전공 전컴, 제2전공 수리통계)...
-
몰랐네
-
옛날에 수업 들어 오셔서 인강 처음 시작했다고 자랑하시던게 생각나네요,,
-
2007년생 특 2
태어났을때부터 첫번째 수능까지 6명의 대통령을 경험 갓난아기때: 노무현 정부...
-
210930 22예비30 180630 풀이 다 이상해 ㅠㅠㅠ 이래서 듣는거긴...
-
현정훈 라이브 0
물리 현정훈이 유명하다 해서 한 번 들어보고 싶습니다. 지금 강민웅 특특 듣고 있고...
-
검고 만점이면 AA 컷이면 CC 이런거임??? 이 게 뭐 노
-
우리동네 병원 6
좋아요
-
시간없으면 0
뉴런보단 한완수임?ㅇㅇ
-
오랜만에 돌아온 범바오 관련 게시글
-
윤성훈 현강 날짜 목요일이랑 바꾸실 금요일 현강생 찾아요ㅠㅠㅠㅠㅠ 0
다른 학원 스케쥴 때문에 목요일 말고 금요일로 바꿔야 하는데 대기가...
-
하하 4
여기서 누가 어느 학교 다니는지 다 파악 완료 다들 조심합시다
-
다들 대학 생활 즐기느라 바쁜듯 근데 나는 아.
-
큰 종이로 뭐하나 뽑고 싶은데 종이 작으니까 글씨 다 씹힘
-
근데 이번 상위권 정시는 ㄹㅇ작년보다 상황 안좋은거죠? 2
하 심란하네
-
난 부산외대 소신 뜨게 생겼는데 에효..
-
확통 한완수 0
어떤가용
-
메슾에도 건양밖에 안보여요
-
쉰내 뭐냐 진짜 아……
-
작수 공통-1 미적-2 틀 얼마나 머리 싸매고 고민해야함…? 바로 해설지 보는...
-
나는 생1 고인물인데 고정1은 거의 맞긴한데 내가 50을 못맞거나 백분위...
-
서울대 시발년이 2
내신 반영 때문에 검고 쳣는데 과학에서 3개툴림;;나머지는 만점이긴함. 투표 좀 ㄱ ㄱ
-
김현우쌤 ㄹㅇ 개친절하심 단과는 현역들이 많이 듣는 거 알고 일부러 마지막 계산까지...
-
김범준T가 요즘 엄청 핫하던데, 이렇게 인기가 많은 이유가 무엇인가요? 제가 건너...
-
우리학교지만 건물은 ㄹㅇ 신식이라 좋네
-
그 과정이 너무 힘들다
-
성욕 컨트롤 어떻게 함 12
한 번 생각나면 아예 공부를 할 수가 없던데 이럴 때마다 집 가서 하고 올 수도...
-
늙어서 서러워
-
1월말부터 시작했는데 벌써 300점되가는데...
-
그냥 미친듯이 양치기하면 오르긴 햇음 + 겨울방학에 친구 추천으로 김현우쌤...
-
안 씻고 다니는 건 자신 있는데 물리 할걸
-
문재인 4
-
경복궁 체험.
-
차단목록 2
늘리는 방법 있나요? 벌써 다 찼네
-
굿..
-
확통은 0
현우진이 고트인가 아님 한완수 볼까요?
-
언매가 상당히 재밌는듯 ㅇㅅㅇ
-
강기원쌤 볼때마다 고등학교 앞에서 저렇게 수업하는거 ㅈㄴ행복해보임 내 모습을...
-
ㅅㅂ
-
여러분의 덕코로 웃음을 선사하는 닉네임으로 바꾸겠습니다
-
n제 훈수 좀요 5
n티켓 수2 눈으로 봤는데 하루 당 문제 8개인데 8문제 중에 1문제 정도 제외하고...
-
아 우리 노베 과외순이 성적 어케 올리지..
-
언미 물1 화1이면 어느정도 나와야 감요?
그 공식에 들어가는것들
사인법칙은 한각의 사인값과 그 각의 대변의길이,외접원의 반지름
코사인법칙은 세변과 한 각의 코사인값이니
이런것들에 집중하면서 저 값들 중 한개가 미지수인 상황일때 공식을 사용해서 미지수를 구할수있다 생각
일단 문제에서 구하는거에 집중하고 목적을 갖고 계산해야함
이때 '삼각형을안다'를 사용하면좋음
두변의길이와끼인각,두각과한변의 길이 같이
삼각형합동조건에 쓰이는 값들을 알면 삼각형을 결정할수있으니까 세변의길이와 각의 값들을 계산만하면 구할수있다라고 생각할수있음
이렇게 삼각형을 안다를 쓰면서 문제에서 구하는거를 구하는 길을 찾고 계산하면됨
도형 문제 풀 때 해야하는 생각 (공식이랑 사용 조건은 안다는 전제)
1. 문제에서 요구하는 것을 알기 위해서 내가 어떤 변or각을 알아야하는지 생각
2. 알고 싶은 변or각을 구하기 위해 주어진 조건이 있나 확인, 조건이 마땅치 않다면
도형의 성질을 적극 활용하여 보조선 그을 생각 해야함
3. 본격 계산을 하기 위해서 표현할 수 있는 변or각 챙겨놓기
-> 도형은 결국 각이 대부분 main임을 생각... 각이 표현이 안된다면 닮음 혹은 단순 비례관계인지 체크
4. (문제 풀다 막힘!) 역과정이 들어가야함, 지금 내가 무슨 목적을 가지고 있지?
방금 내가 식을 작성한건 어떤 목적이었지? 저걸 알고싶은데 그럴려면 이 변/각을 알아야겠는걸?
이런 식으로 생각하는게 보통 제가 하는 사고의 흐름임
당연히 도형문제다보니 성질은 알면 알수록 도움이 많이됨 도구가 늘어나기때문
모든 문제가 마찬가지지만 특히 도형문제는 "목적성"이 중요함...
풀이 하나하나에 의도가 담겨 있어야 쉽게 풀림 그냥 어찌어찌하다 풀리는 경우 드묾