자연수가 더 많을까요 실수가 더 많을까요
게시글 주소: https://orbi.kr/00067703889
수학 글 관심 있으신 분?
25레벨 되기 전에 수학 글을 쓸 수 있을까요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 조진건 난데 다들 기만하고있네
-
보통 수능전까지 5
과목당 실모 얼만큼 푸나요? 100개 넘게 푼다는 글을 봐서
-
반박 안받음
-
지금까지 본 학평, 더프 다 14152122확통주관식2개 이렇게 틀렸는데...
-
진짜 개덥다 1
하
-
물2 개같이 1컷 50 화2 무난하게 1컷 45? 생2 n수생 유입으로 1컷...
-
지2는 잠깐 나가있어 지1화2로 간다
-
지금 테스트이즈리듬 듣는데 좀만 내용 어려워지면 내용이 붕 떠서 정석민쌤 국어...
-
그럼 낮은 22222 뜨면 경외시까지 갈 수 있으니까 서성한중부터는 재능의 영역인거심? 이거 맛나?
-
김범준쌤께서 그런말 하신듯 ㅇㅇ.....
-
근데 또 막상 수능끝나면 롤만 ㅈㄴ할거같음
-
알바 구할때 까지만 일한다고 했는데 빨리 구해지면 좋겠다
-
연령조사 6
-
현우진 김기현 5
재수까지 생각중인 07년생 정시파이터인데 3모 5모 4등급 중간입니다 3점짜리랑...
-
과목마킹 화작으로 바꾸려고 ㅋㅋ
-
국어 1등급분들은?
-
오르비 안녕히주무세요! 10
오르비 잘자~
-
난 존예 여르비인데 14
왜 아무도 나한테 쪽지 안함
-
이거 진짜임? 7
5모 기준 미적 80 vs 확통 92 실력 비슷해보임?? 표점은 확통 92가 10점...
-
문득 궁금해짐
-
이게 왜 다 오이 10
ㅇㅁㅇ
-
뭔가 음함수 미분인줄 첨에
-
갈바닉 부식으로 실험 하려고하는데 부식이 얼마나 오래걸릴지 모르겠어서 바로 확인 할...
-
오르비 안녕 14
-
새벽4시 리그경기를 위해~~
-
군대에서 생활과윤리 2주 공부하고 백분위 93나온 썰 (현자의 돌 활용법) 0
생활과윤리는 놀랍게도 한 달만에 2등급이 나올 수 있는 과목입니다 (제가 직접...
-
오늘공부 0
국어:ebs고전시가4개복습 고전소설2개학습 수학:스탠주간지 풀기, 25강기원모2회,...
-
이번 과탐 무슨 과목이 젤 ㄱㅊ을거같은지 선택 ㄱㄱ 9
나는 일단 생지
-
엔티켓 이해원 빅포텐 지인선 커넥션풀고 하사십풀고있는데 양이 부족해서 같이 병행해서...
-
근데 듣기 3개 틀림 ㅋㅋㅋㅋㅋ
-
더프제외 현역때 국어실모 한번도 안풀어봄 ㅎㅎ나 성장했겠지? 기대가된다 기대가 내...
-
1.인강 듣고 나서 문풀하고 안풀리는거 다시 보는거 2.문풀하고 논리에 허점있거나...
-
작수 쉬고 올해 참전하려는데 왜 작년 6평 29번에 난데없이 해석을 요구하는 선지가 있는거죠...
-
철학지문 시러 11
극혐;;
-
공통은 22번 말고 너무 쉬웠고 미적도 28번 말고는 어려운게 없었음 근데 22번...
-
님들 전문 다 외우고 다님? 아니면 걍 시함장에서 일일이 다 해석함? 전문 ㅈㄴ...
-
존나 맛도리
-
확통사탐 대학교 0
국어 89 수학 98 영어2 탐구 96 96 정도면 공대로 어디까지갈수있나요?
-
표지 디게 예쁘다 근데 문제수가 너무 적네
-
생각보다 오르비에 언급량이 적어서...
-
야옹 3
냥~~
-
생윤하다가 개화나서 작년에 찍먹 했던 동사로 돌아가려는데 어떨까여..역사 제대로...
-
국어 지문은 27
복잡하고 정보량이 많은 거보다 단순한데 생각을 요하는 게 훨씬 나음요. 제가...
-
. . . 7
하버드대학교 맘스터치 학과 26학번 오로라
-
안녕히주무세요 8
오늘은 7시에 일어날래요
-
몇인가요
-
와 젖탱이봐라 침고이네 17
하 진짜 ㅈㄴ 피곤하네 다들 오늘 하루 고생하셨어요
그야당연히

일단 이걸 물어본다는거부터 전혀 실수스럽지 못하네요
허수라서 그렇습니다
극한..!
극한이요?
극한 관련 수학책에서 읽었어서극한이랑 연관되는 건 줄 알았네요

집합론이라 봐야 되지만...수학에서 서로 연관 안 된 게 뭐가 있겠습니까
집합의 농도인가 그런 거 봤음
실수
대각선 논법 검색 딸깍
나무위키는 신이야

사실 기초적인 내용은 꺼무위키만 봐도 다 알긴 하죠정보) 대각선 논법은 올해 수특 독서 과학기술 지문으로 실려있다

이걸 몰랐네
그러면 칼럼 각이 보이는...
제 시험지엔 실수가 더 많네요...하…ㅠㅠㅠ
실수 집합 안에 자연수라서 아닌가

그러면 자연수보다 유리수가 더 많다는 말씀이신가요?실수보다는 허수가 더 많은듯 ㅇㅇ;;

실수와 허수는 집합의 농도가 같습니다공부 실수 허수얘기였어용 ㅠㅠ

알고 있어요대충 칸토어의 대각선 논법
아는 선배가 1과 2사이 실수가 자연수보다 많다..어쩌고 하던데...저는 지식이없어서 이해가 잘 안되더라고요

그런 걸로 글이나 쓰면 재밌을지도...그렇게 어려운 내용은 아니에요
근데 수학과나 수학과 지망생 아니면..뒤로가기 누를듯

이해하는 난이도는 수능 킬러 풀이보다 쉬울걸요헉 그러면 기대하고 있겠습니당
음 모든 자연수의 역수를 취하고 1을 더하면 1과 2 사이 실수로 나타낼 수 있어서 그런 것 아닐까요
힐베르트공간 ㄹㅇ이냐ㅋㅋㅋㅋㅋ(뭔지모름)
하우스도르프 공간 ㄹㅇ이냐 (뭔지 모름)
위상 ㄷㄷ

上실수집합 : [Web발신] 칸토어너는나를존중해야한다나는기수가자연수집합보다크며...

복소수와 어깨를 나란히 하는 goat...Cardinality 개념인가요 호오
저거 질문했다가 통계학 교수님께 1대1 강의받은 기억이 나네요

헉... 귀하네요정말 좋은 기회를...

물론 제가 감자라 이해는 온전히 하지 못했답니다..
겸손하시네요Interval [0, 1] is uncountable <=> There is no surjection(이거 맞나? 몰?루) from the set of all positive integers to [0, 1].
The superset of uncountable set is uncountable.
Thus, the set of all real numbers is uncountable.
해석학 초반부에 나오는 내용이죠 ㅎㅎ
심지어 the set of all positive integers is not dense in real field이죠 ㅎㅎ
비교대상이 아님!
dense set...
아 수학 공부하려 해도 기초가 부실하니까 재개가 어렵네요
그냥 빨리 계절 수2 듣고 2학기에 공수1이랑 전공이나 할까
보니까 해개연1이나 현대1 같은 건 2학기에 없는 것 같더라고요
수리과학부 과목 중 1, 2 나뉜 것들은 1이 1학기 2는 2학기에만 열립니다
컴공 공수는 다른 과랑 좀 많이 달라서 그냥 컴공 공수 듣는 게 좋아요
2학기 공수1은 전기과 분반만 열려서 수강신청도 어려울 거예요
할 거 없으면 미분방정식 들어도 좋고 통계학 빨리 치우는 것도 좋아요
아님 컴공 전공 빨리 들어놓는 것도 좋습니다
방학 때 C++랑 Java 좀 해놓으시고 컴프밍이나 자료구조 듣는 거 추천합니다
아 미방연 말고 그냥 미방은 1-2에 해도 괜찮나요? 생각해 보니 공수1 그건 전정이었구나
2학기 때는 수리 과목 거의 못 들을 것 같아서 교양 치워야 하나 고민했는데...
컴공 전공이 방학 때만 해도 따라갈 수 있을 정도인가요?
다들 외계어를 구사하시네

모든 자연수와 실수가 하나씩 대응될수있는데 같은거 아닌가?
하나씩 대응될 수 없어요...르벡적분마렵다..
둘 다 발산하자낭…똑같이 쥰내 많겠지 셀 수 없을 만큼…이거 전에 관악산매콤주먹이 올렸었는뎁
무한이라고 다 같은 무한은 아니죠
참고로 자연수 집합의 농도는 가산(셀 수 있는) 무한이라고 하더라고요
그렇군…
일대일 대응이 존재하는지 여부를 따져야 합니다
R : power set of N.
card(N)=aleph0 < card(R)=2^aleph0
고1 수학 수행평가에 썼던 주제였는데 오랜만에 보네요

헉 영재학교인가요...?일반고에서는 저거 아는 애들은 좀 있어도 수행으로 나오는 급이면 ㅋㅋㅋㅋㅋ
제가 오해하기 쉽게 말했네요 죄송합니다 ㅋㅋ 수행평가에 보고서 작성하는게 있었는데 그때 논문 읽고 수행평가에 썼다는 거였어요. 평범한 일반고입니다

아 주제 탐구 같은 건가 보네요머랄까 생각햬봣는데 둘다 무한대라고 생각하기 쉽지만 n이 무한대로 갈때 n과 n의n승정도의 차이 아닐까라고..
느낌은 비슷할 수도 있겠네요...!
둘이 아예 다른 무한이긴 해요
자연수에서 실수로의 일대일 대응이 존재하지 않습니다
대각선
이게 그 집합론인가요?
실수요
에르되시 팔인가 그사람이 증명하지 않았나요
칸토어의 대각선 논법입니당
자연수 집합에서 유리수 집합으로 가는 일대일대응함수가 있고, 자연수 집합에서 실수 집합으로 가는 일대일대응함수는 없으므로 자연수 = 유리수 < 실수입니다

이거 쓰면 레벨 오르려나...저도 해석개론 들으면서 알게 되어서… 재밌는 과목이더라고요

오르비식 허수가 제일 많습니다...1->1
2->1.2
3->1.3
:
:
N->1.N에 대응 시킨다고 할 때
모든 자연수를 1.xx에 대응시킬 수 있고 또한 n.xx개까지 있으므로 자연수의 개수의 제곱 보다 실수가 많기 때문에 자연수 개수를 x라 하면 실수의 개수를 x^2+@라 할 수 있으므로
lim(x->무한)일때 (x^2+@)/x는 발산하므로
암튼 실수가 많음 ㅇㅇ
답은 맞았지만 초한기수를 다룰 때 그렇게 말하기에는 오류가 있어요
자연수 집합의 크기를 제곱하면 유리수 집합의 크기지만 둘은 같습니다
저기에서 '@'로 표기한 걸 밝혀 줘야 증명이 가능합니다

그럼 포기숫자는 크면 좋은 거에요
수의 집합에 대해 자연수가 조건이 더 붙으니 실수가 더 많을 수밖에 없지 않나여
그러면 유리수는요?

글쎄요 유리수 집합 정의가 더 작으니까 비슷할 것 같긴 한뎅
저 논리로는 자연수와 유리수의 농도가 같다는 걸 설명할 수가 없어요
농도라는 표현이 재밌네요꽤 어울리는듯요
실제로 원소 개수에 대한 척도를 농도라고 불러요
기수를 통해 나타내기도 하는데 초한기수는 직관적으로 다루기 살짝 어려운 것 같기도...

학문적 수학 문외한인 저에게는 너무 어렵습니다 교수님카디널리티는 실수가 많은건 일대일대응 이용해서 증명할수 있죠
되게 뜬금없는 질문이긴 한데 고양이 좋아하시나요?

귀여운 거 좋아해요하지만 유리수라면??
유리수는 자연수와 같죠
자연수와 자연수사이의 실수부터 무한대니까
실수가더많을듯
수특독서지문미만잡

그 정도는 배경 지식으로...논리철학 전공 수업에서 배웟는데 제목만 봐도 반갑네요 ㅋㅎㅋㅎ

워낙 유명하긴 하죠!