자연수가 더 많을까요 실수가 더 많을까요
게시글 주소: https://orbi.kr/00067703889
수학 글 관심 있으신 분?
25레벨 되기 전에 수학 글을 쓸 수 있을까요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어쩌다 잠못잠 0
아니 근데 왜 벌써 D-222냐...
-
. 10
일단 난 아님
-
고양이 만지고싶다 12
그냥 마구만지기
-
국힘이 정권재창출을 할수있는 방법,대통령 윤통의 마지막 역할 0
국힘 대선주자로 철수(비호감도 가장 낮고 중도 확장성 가장 큰) +지금처럼 강단있는...
-
D-222 0
영어단어 영단어장 day 2 복습 수특 3강 복습 그래도 꽤 많이 반복해 온 탓인지...
-
섹스 4
섹스
-
주무세요 8
-
윤석열 안 뽑음 물론 찢도 안 뽑음 진짜 투표소에서 고민 많이하다가 누굴 뽑든...
-
일본: 도쿄 외각 스피커 ㅈ되는 lp바에서 온더락 홀짝홀짝 플러브,...
-
준킬러를 딱 풀기 직전?느낌의 실력인데 인강을 듣고싶습니다.. 정병호t 프메랑...
-
외면적으로도 내면적으로도 썩어문들어져가는중
-
덕코가질사람 30
손들어봐
-
앞뒤 바꾸면 그게 됨 여담으로 내 거기는 15임
-
근데 막 5시간 이렇게하면 다른과목할시간이..업성서
-
야ㅌ 기숙섬인가 기숙학원처럼 관리 ㅈ도 안되는
-
술 개취했음 3
휘청휘청대며 걷는중
-
현재까지 외교적 성과만 보면 문재인 5년보다 훨씬 성과도 좋고 경제 정책도 나쁘지...
-
물론 PC가 동물농장마냥 특정 계층만을 위한 평등으로 변질됐다는 비판까지는...
-
집결된 보수지지표를 그대로 안철수한테 토스하는거 그거 말고는 정권 재창출의 가능성이...
-
갑자기 궁금해짐
-
한번이라도 좋으니까요
-
잠 좀 깬듯 4
어제 밤새서 오늘 걍 저녁 6시인가 7시 부터 계속 자다깨다가 반복했다가 지금 잠...
-
나도 60만덕 0
줄 오리비 티비 구함 100만덕 채울래
-
뭐 공개할까요 10
치명적인 것이 아니면 공개함 댓글 선착 1위의 의견대로
-
가장 청렴하고 국민 지지도 높고 싫어하는 사람 적고 중도 확장 가능성 높고 계엄...
-
현생 사시나 귀여운 골댕이 보는 재미가 있었는데 말이죠
-
오이이아이오오이이이아이오
-
ㅇㅇ?
-
안 봤습니다 8
저에게 나쁜 감정이 있었다면 조금이라도 해소됬었으면
-
야¡¡¡¡¡ 0
기분좋다 언조비키
-
야!!!!!! 14
-
사랑받고, 사랑하고 있어요 꿈을 이루었어요 하고 싶은 일을 하고있어요 영원히 꿈꾸고 싶어요
-
ㅌ컨팀 일이 밀렸잖아 하아... 6시에 일어나야지 안녕오르비
-
오르비언들 5
사랑해요 행복하세요
-
문학이 ㅂ신이 됬어
-
내일 6시 30분 기상 알람 맞춰두고 시대 다닐 땐 폰하다가 3시에 자고도 이 때...
-
맞팔구 0
-
지금이니
-
자러가요
-
파면한다 당시 녹화해놨던거 무한재생중 도파민 지리네
-
좋아하는 생각하기
-
한쪽은 비 맞지 않나 사이좋게 붙으면 괜찮을려나
-
난 윤석열에 어느정도 기대를 하긴 했음 비록 선거과정에 좀 이상한 짓을 많이...
-
인생망한거같다 0
고1때부터 정시선언하고 나댔다가 학교 다니면서 우울증,대인기피 심해지고 수능은...
-
지금이라도 늦지 않았다 영혼까지 끌어 부동산 올인해야하는 이유 3
오늘이 최저점임 이재명은 합니다
-
정벽 아기야 안아줘 15
아 일하기 싫어.. 놀았으니까 일 해야하는게 당연한검데 그냥아기하고싶어
-
이짤아는사람 6
.
그야당연히

일단 이걸 물어본다는거부터 전혀 실수스럽지 못하네요
허수라서 그렇습니다
극한..!
극한이요?
극한 관련 수학책에서 읽었어서극한이랑 연관되는 건 줄 알았네요

집합론이라 봐야 되지만...수학에서 서로 연관 안 된 게 뭐가 있겠습니까
집합의 농도인가 그런 거 봤음
실수
대각선 논법 검색 딸깍
나무위키는 신이야

사실 기초적인 내용은 꺼무위키만 봐도 다 알긴 하죠정보) 대각선 논법은 올해 수특 독서 과학기술 지문으로 실려있다

이걸 몰랐네
그러면 칼럼 각이 보이는...
제 시험지엔 실수가 더 많네요...하…ㅠㅠㅠ
실수 집합 안에 자연수라서 아닌가

그러면 자연수보다 유리수가 더 많다는 말씀이신가요?실수보다는 허수가 더 많은듯 ㅇㅇ;;

실수와 허수는 집합의 농도가 같습니다공부 실수 허수얘기였어용 ㅠㅠ

알고 있어요대충 칸토어의 대각선 논법
아는 선배가 1과 2사이 실수가 자연수보다 많다..어쩌고 하던데...저는 지식이없어서 이해가 잘 안되더라고요

그런 걸로 글이나 쓰면 재밌을지도...그렇게 어려운 내용은 아니에요
근데 수학과나 수학과 지망생 아니면..뒤로가기 누를듯

이해하는 난이도는 수능 킬러 풀이보다 쉬울걸요헉 그러면 기대하고 있겠습니당
음 모든 자연수의 역수를 취하고 1을 더하면 1과 2 사이 실수로 나타낼 수 있어서 그런 것 아닐까요
힐베르트공간 ㄹㅇ이냐ㅋㅋㅋㅋㅋ(뭔지모름)
하우스도르프 공간 ㄹㅇ이냐 (뭔지 모름)
위상 ㄷㄷ

上실수집합 : [Web발신] 칸토어너는나를존중해야한다나는기수가자연수집합보다크며...

복소수와 어깨를 나란히 하는 goat...Cardinality 개념인가요 호오
저거 질문했다가 통계학 교수님께 1대1 강의받은 기억이 나네요

헉... 귀하네요정말 좋은 기회를...

물론 제가 감자라 이해는 온전히 하지 못했답니다..
겸손하시네요Interval [0, 1] is uncountable <=> There is no surjection(이거 맞나? 몰?루) from the set of all positive integers to [0, 1].
The superset of uncountable set is uncountable.
Thus, the set of all real numbers is uncountable.
해석학 초반부에 나오는 내용이죠 ㅎㅎ
심지어 the set of all positive integers is not dense in real field이죠 ㅎㅎ
비교대상이 아님!
dense set...
아 수학 공부하려 해도 기초가 부실하니까 재개가 어렵네요
그냥 빨리 계절 수2 듣고 2학기에 공수1이랑 전공이나 할까
보니까 해개연1이나 현대1 같은 건 2학기에 없는 것 같더라고요
수리과학부 과목 중 1, 2 나뉜 것들은 1이 1학기 2는 2학기에만 열립니다
컴공 공수는 다른 과랑 좀 많이 달라서 그냥 컴공 공수 듣는 게 좋아요
2학기 공수1은 전기과 분반만 열려서 수강신청도 어려울 거예요
할 거 없으면 미분방정식 들어도 좋고 통계학 빨리 치우는 것도 좋아요
아님 컴공 전공 빨리 들어놓는 것도 좋습니다
방학 때 C++랑 Java 좀 해놓으시고 컴프밍이나 자료구조 듣는 거 추천합니다
아 미방연 말고 그냥 미방은 1-2에 해도 괜찮나요? 생각해 보니 공수1 그건 전정이었구나
2학기 때는 수리 과목 거의 못 들을 것 같아서 교양 치워야 하나 고민했는데...
컴공 전공이 방학 때만 해도 따라갈 수 있을 정도인가요?
다들 외계어를 구사하시네

모든 자연수와 실수가 하나씩 대응될수있는데 같은거 아닌가?
하나씩 대응될 수 없어요...르벡적분마렵다..
둘 다 발산하자낭…똑같이 쥰내 많겠지 셀 수 없을 만큼…이거 전에 관악산매콤주먹이 올렸었는뎁
무한이라고 다 같은 무한은 아니죠
참고로 자연수 집합의 농도는 가산(셀 수 있는) 무한이라고 하더라고요
그렇군…
일대일 대응이 존재하는지 여부를 따져야 합니다
R : power set of N.
card(N)=aleph0 < card(R)=2^aleph0
고1 수학 수행평가에 썼던 주제였는데 오랜만에 보네요

헉 영재학교인가요...?일반고에서는 저거 아는 애들은 좀 있어도 수행으로 나오는 급이면 ㅋㅋㅋㅋㅋ
제가 오해하기 쉽게 말했네요 죄송합니다 ㅋㅋ 수행평가에 보고서 작성하는게 있었는데 그때 논문 읽고 수행평가에 썼다는 거였어요. 평범한 일반고입니다

아 주제 탐구 같은 건가 보네요머랄까 생각햬봣는데 둘다 무한대라고 생각하기 쉽지만 n이 무한대로 갈때 n과 n의n승정도의 차이 아닐까라고..
느낌은 비슷할 수도 있겠네요...!
둘이 아예 다른 무한이긴 해요
자연수에서 실수로의 일대일 대응이 존재하지 않습니다
대각선
이게 그 집합론인가요?
실수요
에르되시 팔인가 그사람이 증명하지 않았나요
칸토어의 대각선 논법입니당
자연수 집합에서 유리수 집합으로 가는 일대일대응함수가 있고, 자연수 집합에서 실수 집합으로 가는 일대일대응함수는 없으므로 자연수 = 유리수 < 실수입니다

이거 쓰면 레벨 오르려나...저도 해석개론 들으면서 알게 되어서… 재밌는 과목이더라고요

오르비식 허수가 제일 많습니다...1->1
2->1.2
3->1.3
:
:
N->1.N에 대응 시킨다고 할 때
모든 자연수를 1.xx에 대응시킬 수 있고 또한 n.xx개까지 있으므로 자연수의 개수의 제곱 보다 실수가 많기 때문에 자연수 개수를 x라 하면 실수의 개수를 x^2+@라 할 수 있으므로
lim(x->무한)일때 (x^2+@)/x는 발산하므로
암튼 실수가 많음 ㅇㅇ
답은 맞았지만 초한기수를 다룰 때 그렇게 말하기에는 오류가 있어요
자연수 집합의 크기를 제곱하면 유리수 집합의 크기지만 둘은 같습니다
저기에서 '@'로 표기한 걸 밝혀 줘야 증명이 가능합니다

그럼 포기숫자는 크면 좋은 거에요
수의 집합에 대해 자연수가 조건이 더 붙으니 실수가 더 많을 수밖에 없지 않나여
그러면 유리수는요?

글쎄요 유리수 집합 정의가 더 작으니까 비슷할 것 같긴 한뎅
저 논리로는 자연수와 유리수의 농도가 같다는 걸 설명할 수가 없어요
농도라는 표현이 재밌네요꽤 어울리는듯요
실제로 원소 개수에 대한 척도를 농도라고 불러요
기수를 통해 나타내기도 하는데 초한기수는 직관적으로 다루기 살짝 어려운 것 같기도...

학문적 수학 문외한인 저에게는 너무 어렵습니다 교수님카디널리티는 실수가 많은건 일대일대응 이용해서 증명할수 있죠
되게 뜬금없는 질문이긴 한데 고양이 좋아하시나요?

귀여운 거 좋아해요하지만 유리수라면??
유리수는 자연수와 같죠
자연수와 자연수사이의 실수부터 무한대니까
실수가더많을듯
수특독서지문미만잡

그 정도는 배경 지식으로...논리철학 전공 수업에서 배웟는데 제목만 봐도 반갑네요 ㅋㅎㅋㅎ

워낙 유명하긴 하죠!