지인선 모 2회 22번 질문(천덕)
게시글 주소: https://orbi.kr/00067648928
밑줄 친 곳의 공식이 어떻게 나온건지 모르겠네요
극값의 높이차를 구한 것 같은데, 보통 a/6 * 극점거리^3으로 구하잖아요??
a7부터 a16까지의 거리를 3/2 * 극점거리로 놓고 풀었다고 보가엔,
4/27. * 2라고 따로 표기하신걸로 보아, 최고차항2를 나타내고 싶으셨다고 보여지는데,
제가 모르는 공식같은게 따로 있는 걸까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너와 마신 커피 한 잔에도 난 세상을 가졌어
-
일어나보니 4
너가 없더라
-
뭐 왓츄세이
-
송도가 유배지면 2
여긴 뭘까
-
오르비 잘자 6
-
만약에 간다고 하면 사문이 낫나요 아니면 생윤이 낫나요?
-
그냥 순수하게 행사가 많음 학교 행사들.... 특히 기숙사 rc활동요 송도가...
-
개졸려요 ㅁㅊ 하긴 오전 6시부터 자정까지 대구 -> 인천 -> 대구 이러고...
-
고3가서도 비슷하게 나옴? 거의 99 실수 좀 하면 98
-
라고 생각 들 때 쓰는 짤 모음
-
남자가 하면 개좆같고 여자가 하면 그나마 귀엽게 보는걸까 모순적인 내가 싫다
-
님들그거아시나요 1
전몰라요..
-
기분이 꿀꿀함 야간만 안했다면 완벽히 기분 좋았을 듯
-
이거 안하면 공부하러 나오는 의미가 없음 어디까지 가볼까
-
아가자러감 18
쓰담부탁드립니다
-
둘중에 한과목 버린다는게 아니라 비중을 어디에 둘까 물어보려구요 영어 2~3나오고,...
-
어케 공부하는걸까요.. 강의 하나듣고 맞는 범위 현돌풀고?? 아니면 강으ㅏ 먼저 쭉...
-
개같이기어감
-
서바 구매? 0
서바 수학이나 탐구 비재원생은 구매 못 하나요? 독재다니는데 옆자리사람 푸는데 학원...
-
섹스 1
ㅋㅋㅋ응
-
대충 절반은 맞추는데 사문이 넘 재미없어서 세계사 하고싶은데 지금해도 될까여..매우 고민중ㅜ
-
2/3를 출석하라고?
-
수1 2 평가원 최저정답률만 모아놓은 학습자료 없나 1
서치해도 없네
-
국어를잘하는이원준이부럽구나...
-
못 만나 봄....
-
어떨까요 제기분이좋겟죠아마
-
가는 길 버스에서 6평 풀고 저녁에 해설하러 가야함 토깽이가 할 수 있을까..
-
현재 기원쌤 수강하면서 드릴6 풀고 있어요(막히는거 한두문제) 문제 빠르게 쳐내면서...
-
낼 학교 쉴까 0
오늘ㅇ,..여자친구랑도 헤어지고 낼 6교신데 수행이 5개 있네 곧 6모인데 이게...
-
국어 : '재수때 ㅈㄴ 다 했는데 수능에서 2등급으로 미끄러진거임 걍 실모랑 문학...
-
사료해석은 길이에 비해 쉽다고 생각합니다(사실 사료도 엄청 어렵게 만들려다가 실패)...
-
겨울이 가장좋아 4
벌레가 제일싫어 날파리,모기,진드기,화상벌레 등등 다 꺼져버려 빨리 벌레없는 겨울이왔으면
-
현대사에서 무난한 문항보다 살짝 더 깊게 들어갔습니다 그러나 힌트를 곳곳에 배치했고...
-
다들 왜 이런 얘기하는지 좀 알 거 같음 최근에 뭔가 그린라이트 떴다가 망한 적이...
-
가능한 모든 어려운주제 + 당황스러움까지 너무 벽이 느껴지는데
-
감귤 먹는 시골쥐의 우당탕탕 육지 여행 2(서울 편) 9
***사진 많아요. 데이터 & 스압 주의*** 전 편 아 부산에서 서울로 가는 게...
-
옯스타 맞팔해줘 2
unforgettablesnu
-
현실은 벌레만도 못했죠 몰랐어요 난 내가 버러지란 것을 괜찮지가 않아 난 모자르니까...
-
. 10
-
큐레깅!!!! 글씨 너무 예뽀오
-
좋은 밤 보내시고
-
죄책감시발
-
ㅈㄴ무서웠다 12
갑자기 누워있는데 화상벌레(청딱지개미반날개)가 나타난거임.. 그래서 당장 화장실가서...
-
자러 감 1
근데 자다가 죽으면 어캄
-
큰거왔다 1
캬 네버엔딩스토리라니
-
잡담글만 써야지
-
ㄹㅇ 다 존나 못하는데 입만 존나 터네 재명 마렵ㄴㅔ
-
수학. 물2만 쓸꺼야
ㄴㄴ 걍 님이 알고있는 그 공식 맞는듯요
(2/3)³ 따로 뺀거같은데 그냥
사진에 나온 공식 사용했습니다!
결국 극값 차이 구하는 공식은, 어쨌든 도함수의 넓이 공식을 통해 유도할 수 있으니 본질적으로는 비슷하고 하나만 제대로 알아두어도 상관없다고 생각합니다!
어떻게 유도된 식인가요? 원래 극값의 차는 이차함수 밑넓이에서 파생되엇잖아여 저 식은 어디서 온건가요
음 일단 알파와 베타를 사진과 같이 설정했을 때,
삼차함수 비율관계에 의해 주어진 삼차함수가 극값을 가지는 위치는,
(2alpha+beta)/3 와 beta 일 거에요!
이제 (2alpha+beta)/3 와 beta를 작성자님이 알고 계신 극점거리 사이 공식에 대입하면,
사진 속 공식이 나옵니다!