학생들 95%가 잘못 아는 수학 개념
게시글 주소: https://orbi.kr/00067633525
바로 ‘치환적분법‘입니다.
제가 매년 학생들을 가르치면서 느끼는 건
이 개념에 대해서 제대로 이해하고 있는 학생이 거의 없다는 겁니다.
치환적분법은 얼마든지 고난도 문제로 출제될 수 있고, 출제된 적도 많은데도 말이죠.
자기가 이번 수능에서 수학 1등급 꼭 받아야한다는 학생들은 아래 영상을 꼭 참고해보세요.
제가 서울대반, 의대반 강의할 때도 학생들이 듣고 깨닫는 게 많다고 했던 내용을 담았습니다.
<치환 적분법 핵심 오개념>
1등급들은 다 되는 메타인지 나도 기르기
1달 만에 6000명 돌파한 저의 유튜브 구독자 이벤트 중입니다!
서울대, 의대생들이 썼던 ‘공진단 체크리스트’를 무료로 나눠드리고 있습니다!
내가 공부를 잘 하고 있는지, 못하고 있는지를 자동적으로 확인하실 수 있습니다! : )
더 구체적인 내용은 아래 영상 참고해주세요 :)
0 XDK (+10)
-
10
-
재종 자습 3
애들 ㅈㄴ 열심히함 ㄷㄷ
-
날씨 지랄마 0
존나 덥네
-
의사가 나보고 14
콜레스테롤이 높다는데 이게 높으면 어디가 안좋음?
-
도는속도 처참한거같은데 이러다 정원 다 못채우는거 아닌가
-
경상도인이라 뭐라카노 같은 ~노 꽤 썼는데 언제부턴가 노 쓰면 이상한..? 취급...
-
내가 오매불망 기다리는중
-
[단독]전문의 1차시험 500명 합격…작년의 18% 불과 1
올해 전문의 자격시험 1차 필기시험에 응시한 534명 중 합격자가 500명에 그친...
-
ㅈㄱㄴ
-
솔직히 경희대 허접임 12
초 허접 스레기 병신 쟈코 으휴 인 ㄴㅐ가 간 대학임 머쓱;;
-
https://orbi.kr/0008594153 여기도 D-268인데 오늘 실제로...
-
고분자공학과를 갈지 간호학과를 갈지 고민중 차피 편입해서 간호학과 갈거긴 한데...
-
내 친구들 ㅈㄴ 쓰던데 ㅋㅋㅋㅋㅋㅋㅋ 이거 일베말투임?? 대학에서 쓸뻔햇네 ㅅㅂ
-
확통 미적 0
진짜 별 생각 없긴 한데 일단 지금까지 제 상황입니다. 미적 진도 다 나감 확통...
-
그때 죄다 92,96점이던데 오르비 바로끄고 수능까지 안들어옴 ㅋㅋㅋ
-
ㅈㄱㄴ 이미 theme 10까지 시냅스랑 병행해서 듣긴했는데 걍 뉴런 다듣고 수분감...
-
뭔일
-
건대 추합붙었어요 ㅠㅠ 13
내일아니면 모래 연락오겠지했는데 벌써 빠지다니 ㅠㅠㅠ 전화오는데 손 벌벌떨면서...
-
나정도면 1
새터에서 오르비하는거 들켜도 타격없겠지??
-
거기에 자켓은 추?후 오픈예정인 온라인샵
-
말이 해를 보면 12
그냥 해본 말이야 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
내일부터 0
진짜 토익공부 해야지 요새 약때문에 공부 하기 힘들었음 뭐 노는건 다 놀았지만 ㅋㅋㅋ
-
피램 0
피램을 풀려고 하면 생각의 전개도 있고 기출도 있고 종류가 다양하던데 무슨 피램을...
-
한가지 중요한게 생기면 평소엔 사소하게 신경쓰던것도 버리고 그거 하나만 보고...
-
동홍도 못가는 성적이라 아쉽진않음ㅋ
-
시그마에서 n빼고는 상수취급인데 k=1이고 n=1이면 맨 윗줄 식의 n자리 k자리...
-
??? : 아니 내가 그때 고려대를 가고도 남앗다니까?!?
-
심 강의 들으려고 들어올때마다 오르비를 봐야하는 게 너무 불편해 보다보면 중독되고...
-
천만덕 가쥬아
-
계속 찾아보는데 나오질 않네요 혹시 갖고계신분 있을까요?
-
경영이랑 같이 쓴 표본이 좀 더 있어서 740 아래도 볼만한데
-
내가 왜 만족 못하냐면 16
작년에야 비로소 내 꿈에 가까워졌다는 생각을 했었거든 모고든,사설이든 그정도로...
-
모 유명 고닉이 사실 여르비인데 다들 모르더라
-
원래 통통 이였음.. 기하 이차곡선 개념중임..
-
나처럼 오티에서 “오르비에서 봤어요” 당하고 싶지 않으면
-
수익률 150%
-
근데 흥미롭게 보는게 별로 없음
-
님드라 자전은 0
새터 안가면 ㄹㅇ 아싸됨?
-
라이터없어서 맞선임한테 라이터좀... 이랬는데 맞맞선임이 라이터좀은 반말이고...
-
쓴소리 4
하지말아주세요
-
내 앞에 이 친구가 빠져줘야 돼…
-
볼만한가? 마블은 엔드게임 이후 로키 밖에 안 봤는데
-
저도쓴소리좀 6
제발요
-
국자로 펐나? 개꿀
-
이 짤 느낌 좋음
-
국어 24수능 골목 안 = 25수능 생윤
-
설의적 표현<--------이새끼 정신 못차리는 중
-
근데 오전대비 지금 나 예비 줄었는데 뭐어케되어가는거임
-
아마 하고있을듯
-
설전정 400.3 합으로 그쪽은 검증했는데 컴은 진학사 컷 408 아래로...
-
안녕하세요, 쑥과마늘입니다. 오늘은 수능 국어에 숫자가 제시된다면 어떻게 반응해야...
확통이는 스윽...지나갑니다
![](https://s3.orbi.kr/data/emoticons/rabong/002.png)
확통이들을 위해서도 오개념 정리 한 번 싹해보는 건 어떨까요! : )본질적인 이유는 이번 기회에 제대로 알았습니다만 선생님 근데 합성함수의 미분 꼴에서 g(x)를 T같은 걸로 치환했기 때문에 합성함수 미분 꼴에서 나올 g'(x)가 T'가 되서 1이 되니 사라진다는 건 알겠는데 그렇다면 그냥 g'(x)dx=dt라고 생각해도 큰 지장은 없는 것 아닌가요? 제가 수학 34등급이라 이해를 못한걸수도 있습니다 이해 부탁드립니다
"g'(x)dx=dt라고 생각"이라고 하셨습니다만
이게 오류이기 때문에 '생각'을 안 해야 받아드릴 수 있는 거랄까요?^^;;
적분에 ∫h(x)dx에서 h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
치환적분 처음 배울 때 학생들이 많이 혼란스러워하는 부분이기도 하고
고등학교 수학 범주 내에서 계산상으로도 비효율적이어서
혼란 해소 & 계산 효율 향상을 위해 알려드린 것입니다.
또한 제 경험상
많은 학생들이 이에 대해 고민하고 헤매다가 생각을 접고 그냥 받아드리는데
그 고민하고 헤매는 시간을 없애고
공부에 집중할 수 있도록 해드리는 것이 이 영상의 목적이기도 합니다 ㅎㅎ
(학생에 따라 이걸 상당히 오래 고민 경우도 있어서요)
또한 미분 적분에서 이런 기호 사용에 대해
헷갈릴 수 있는 부분이 정리되어 있어야
dy/dx를 본격적으로 다루는 고난도 문제 풀이도 받아드리기 좋다고 생각해요.
일변수함수에서는 마치 분수처럼 연산이 가능합니다. 우연의 일치이긴하지만 치환적분의 원리만 이해했다면 계산의 편의가 있는 문항의 경우 사용해도 무방하다고 봅니다
지나가던 학생입니다 입시생도아니라 딱히 할말은없는데 dt/dx가 분수는 아닌것은 맞으나 xyz그이상의 다변수함수가 아닌이상 분수처럼 사용해도 큰문제는 없는걸로 아는데 심지어 미분방정식 첫 시작할때 저런식으로 dy/dx쪼개서 넘겨서 쓰기도하구요
애초에 저게 분수가 아닌이유도 원래 분수처럼 라이프니츠가 쓸려다가 dt같은 무한소는 존재하지않는다는게 현대에 와서 밝혀졌고 그래서 분수가 아닌걸로 결론내려진걸로알고있고
xyz이상쓰는 다변수의함수에서는 저런 dy/dx가 벡터개념으로가기때문에 분수로 사용은 불가능한걸로알고
고등학교내에서는 심지어 대학과정에서도 다변수함수가아닌이상
(이부분은 제가 몇년전에 들어서 기억이 안나네요..) 이렇게 dy dx 를 쪼개든 분수처럼 쓰든 크게 써도 상관없는이유가 연쇄법칙쪽과 관련있어서 괜찮다고 알고있는데 굳이 분수아니다 라고 굳이할필요는 없지않을까요?
고등학교에서 라운드기호쓰는 편미분을 할리도만무하구요
맞습니다. 응앵웅웅님처럼 수학 실력이 좋으셔서
분수가 아닌 것도 알고 있고
미분 상황에서 분수처럼 써도 되는 이유까지 알고 있으면
전혀 혼란스러울 것이 없을 것입니다.
그런데 현장에서 학생들을 가르치다보면
이 부분이 납득을 못해서 혼란스러워하는 학생들이 굉장히 많습니다.
d/dx f(x) (=df(x)/dx) 기호 표현에서
d/dx 와 f(x)가 곱해져 있는 것으로 생각하는 경우도 많고
또한 이번 글에서 다루는 것처럼 치환적분할 때
정확한 원리에 대한 이해 없이
g'(x)dx=dt를 이용해서 문제를 풀다보니
이것 자체보다도
∫h(x)dx와 같은 형태에서
h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
그동안 내가 적분 해왔던 건 뭐지?하며 혼란스러워하는 경우도 많이 봐왔고
혼란을 끝내기 위해
이해를 포기하고 대충 받아드리고 나니
dy/dx를 본격적으로 다루는 고난도 문제 풀이도
못 받아드리는 경우도 많이 봐왔습니다.
잘 아는 사람 입장에서는 쉬우니까 적당히 해도 좋을 것처럼 느껴지지만
(저도 대학생때까지는 그리 생각했는데 본격적으로 학생들을 가르치니 입장이 달라지더라고요)
잘 모르는 사람 입장에서는 미적분에 대한 수학적 사고 자체가 막히는 일이 발생해서
고난도 문제 다루기를 어려워하는 걸 보아 안타까운 마음에 얘기하게 되었습니다. :)
저도 chain rlue 생각해서 ㄱㅊ지 않나 싶었는데 선수를 뺐겼네여..
분수가 아닌건 알지만..고등학교 교육과정 내에선 분수로 생각해도 오류는 없다고 배우긴 했습니다