-
ㅇㅂㄱ 0
-
기차지연된다 3
큰일났나?
-
보니까 eicc에서 영어통번역학과로 2025년도부터 학과명 변경 했다는데 이러면...
-
뜨듯한 2
용암 한 잔 하고 싶다
-
성대 글바메 0
664.5x 붙는 점수인가요?
-
잘못된선택일까
-
킁 1
-
잘자 오르비
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
환상 갖지마삼
-
기차지나간당 4
부지런행
-
돈 벌기 힘들다
-
저 사실 금발임 3
근데 흑발로 염색햇음
-
너...너무해여....
-
난 한결같은 사람인데 그거 가면쓴거엿던거임
-
특정한애가 박제해도 상관없어 이젠 나도 몰라
-
나가아니고 너
-
ㅈ...저는.. 물...물화라구여.... 젭알... 사탐런..하지마여....
-
흠
-
무브링
-
서울대 수리과학부 연세대 전기전자공학부 고려대 사이버국방학과 한양대 미래자동차공...
-
이시간에 배달비까지 해서 13000원임 거기다 콜라 1.25l로 줌 동네 치킨집인데...
-
사랑과평화우정
-
어피니티
-
어제 일당 ㅇㅈ 3
외화 유출 ㅈㅅ
-
진짜로
-
좋은꿈꿔
-
특정한번 당하니까 바로 그냥 아이고아이고아이고아이고 아이고맨이 되어버리고 이제는 망해버렸어
-
꼬리 흔드는거 하아...
-
내가 이김뇨 ㅋ 2
미지
-
ㅠ
-
의예과 제외
-
다음 프사 4
루시다음 닉 ㅁㄹ.
-
그랬기 때문에 항상 공허한 느낌이 드는 것일까요,, 어디로 가야 할지도 모르겠어요,,
-
잘자요 6
내일은 좋은 하루가 되었으면
-
17개월구라아님
-
나중에 수능망해서 거기보다 안좋은곳 가게되더라도 붙었는데안간거랑 떨어져서못간거랑...
-
그건 몸에 괜찮지않나
-
연초에 전담에 종류별로 몇번 해봐도 다시피고싶단생각이안들음 좋은거긴한데 신기하달까
-
Maybe there are still happy answers left for my discovery 0
What's the colour of the electric sheep you...
-
어 형이야 ???: 난 수학 전체 1타가 목표에요
-
소심해서 말못함
-
걍 엄마랑 쇼부볼까 열심히 살테니까 담배 피는거 허락해주라고 차라리 금딸이 쉽겠다
-
흡연열차시절 4
조금 그립네
-
2015년이 10년전임...
-
요즘새르비다시핫해셔서좋음
-
으갸갹 2
-
어른들은 몰라요 4
아무것도 몰라요마음이 아파서그러는건데
1번입니다
(각PAB<(=)90)
2번입니다
이 풀이로 접근을 하려면 원 위에서 점을 뽑는 경우와 각도로 삼각형을 정의한 경우가 서로 호환이 되는 uniform distribution 인지 증명을 해야해서 상당히 어려울 것 같습니다...
선생님 외계어 해석해주십시오..
통상적인 이산(유한)수학에서는 일대일 대응으로 같은 확률을 만들어내는 상황을 보증할 수 있지만 무한수학(기하학적 확률)에서는 일대일 대응이 있어도 같은 확률인 상황인지 보증할 수 없다는 느낌... 이라고 하면 좋을까요?
전체집합이 10 이하의 자연수일 때 3 이하인 자연수를 뽑을 확률은 당연히 3/10이고,
전체집합이 100 이하의 제곱수일 때 9 이하인 제곱수를 뽑을 확률도 당연히 3/10이지만,
f(x) = x^2 (x>=0) 이 일대일대응인 관계를 갖고 있다 하더라도
전체집합이 0 이상 10 이하인 실수일 때 3 이하인 실수를 뽑을 확률과
전체집합이 0 이상 100 이하인 실수일 때 9 이하인 실수를 뽑을 확률은 당연히 다르겠죠
지금의 문제상황에서 삼각형의 세 각도 x, y, z를 찾아내면 한 원 안에 접하는 경우가 (유사) 일대일이 되도록 상황을 세팅할 수는 있지만, 그 상황이 확률까지 같은 상황을 보증해주는지는 알기 어렵다...고 말하면 될 것 같습니다.
사실 이렇게 말씀드리지만 기하학적 확률 부분에 대해서는 저도 부족한 부분이 많아서 정확히 말씀드리기가 어렵네요...
역시 증명은할게못되는군요..
감사합니다
사실 크기와는 관련이 없어 동비율처리되어 문제없어보인다는게 제 견해지만
제가 대학수학을 제대로 배운게 아니라
그 이상의 답변은 힘들것같습니다
삼각형은 외접원이 항상 존재한다 정도는 힘들까요