-
나중에 반수할 거라고 하니까 아쉽네
-
ㅇㅈ 10
재밌네이거
-
두번 가고 세번 가라...
-
다들 자자
-
ㅇㅈ 1
“ㅇㅈ”것들
-
이수린
-
휴르비함미다 4
6평전에는올수동
-
이제 비갤에 박제당할거야 ㅠㅠㅠㅠㅠ
-
처음엔 수컷 2마리만 키우려 햇는데 찾아보다보니 왕사 1쌍 산란세팅에 톱사+왕사...
-
와 좆됗네
-
반수하면서 VEGA 개념 강의 듣고 있는 중인데 킬러 주제는 확실히 문제도 많고...
-
양심에 손을 대고 13
이중에 하나가 부모님 자가면 자매 형제 그냥 집 넘겨주기 가능함??
-
짱 멋진 사람이 되어 돌아오길
-
오르비 디톡스 시작 12
저는 좀 줄이긴 해야할듯요..
-
그냥 인생이 원래 너무 어려운건가봐
-
아니 2시에 2분만에 좋아요 10개가 되네....ㅡㅡ
-
고로 존재하지 않는다
-
오늘은 죽엇나
-
잘 봐서 오르비언들한테 도움이 되고 떠나고 싶음 칼럼이라던지 팁이라던지.. 그게...
-
공시 0
공부시작
-
[꿀팁] 오르비 끊는법 17
9월모의고사 성적표를 받는다
-
아 잘래 1
화나~~~~ㅠ
-
강평 1
영어는 강평
-
어이 오마에 1
죽고 싶은 거냐
-
남자는하지말라고했다
-
ㅠㅠ
-
..눈 ㅇㅈ합니다.. 10
끝났어
-
길 갖고 별 소리ㅡㄹㄹ 다 하네
-
강아지를
-
오르비 활성화하기 운동
-
2시5분까지 어짜피 안됨
-
예전에는 비요뜨를 누가 주면 요거트 신맛이 너무 싫어서 초코 과자만 걸러서 먹었는데...
-
몇몇은 나가고 5
몇몇은 자러가니 고요한 오르비가 되엇구나
-
아름다운 하늘 그 곳을 향해
-
츼했는데 0
오르비나해야잊
-
10명이나 하신 건가요..... 딱 팔로우 팔로잉 10명이 없어졌네요
-
왜ㅜ안오는거야
-
ㅇㅈ 25
난 바퀴벌레야
-
요즘 떠나는 사람들이 팔로워 수 보면 너무 많네 난 수능 끝나고 탈릅해야하나
-
가면라이더 볼까 0
오즈 << 이거 존나 재밌게봄
-
술이 는건÷ㅡ
-
니들은 부모님 자가 16
본인꺼가 될꺼라고 생각은 함 아님 그래도 ㅈㄴ 먼 일이라고 생각함
-
김기현 현강 0
혹시 현강 다녀보셨거나 잘 아시는분 있나요 제가 안가봐서 잘 모르는데 지금 분당러셀...
-
그래서 내가
-
하는데 저거상품이 메가박스영화권이라 걍 팔기도 뭐함 솔직히 팔아도 반값에 팔지않나;
-
여러가지 상황의 수를 계산해봤지그땐 내가 좀 못생겨서 흑흑 네가 좋아하는 노랠...
-
100만덕 뻥튀기 돼있음
막 수학 여러단원 섞고 언어 사회 윤리 과학 영어 음악 체육 코딩 등 다른과목 개념과 섞어서 개지랄같은 극악난이도 문제 많이 만들어서 책을 내봐 살게 의외로 극악난이도 수학문제집 수요가 꽤있다?? 그런거 푸는거 좋아하는 사람들 꽤많어 인도iit 중국북경대 프랑스 바칼로레아 입학문제 참고해봐
아조씨 옛날엔 안이랬잖아요 왜이러세요;;
이건 뭐임 ㅅㅂㅋㅋㅋㅋㅋ
설마 기억해서 답 올리는 틀딱들이 있겠어...?
논술 대비 문제인가여...? 개어렵네요.. 어디서부터 시작해야할지 모르겠어요ㅋㅋ
예전에 만든 3점짜리 문제 검토받다가 의문점이 생겨서 수학 괴물 한분께 물어봤다가 나타난 난제였답니다...
저거 문제화 시킨 사람 저랑 같은 인간이 아닌거 같음요
일단 접근 팁은 f(x+2)=4f(x)를 만족시키더라도 왜 지수함수꼴이 아니지? 에서 시작하시는게 좋다고 봅니다
f(1)=a^b마렵네요..
f(p)×f(q)=f(pq)÷a^b
모든실수pq
제 의도와는 다릅니다
식의 형태가 아닌 짧은 글귀 하나만으로 끝납니다
극값X?
f'(x)=0의 실근이 존재하지 않는다
오 이거인듯 이러면 반례가 안만들어짐
f(x/2)^2=f(x) 입니다
찍)f는 아래볼록
반례확인: 2^x+kx(x-2)(x-2/5). k 조절시 0~2 전구간 아래볼록 가능
함수 f는 실수 전체 집합에서 정의된 미분가능 함수이기 때문에 반례로 제시하신 함수는 f(x+2)=4f(x)가 성립이 안됩니다

이게 정답입니다...!!찍2)f(x+k)=2^k*f(x)(k는 아무 무리수)
루트2라 치면: 2와 루트2를 정수배해 더해서 무한소 만들고 조밀성+연속성=완비성으로 모든 수에 적용시키기