수열 준킬러 1분 안에 푸는 방법 (2)
게시글 주소: https://orbi.kr/00067340401
과연 무조건 첫째항부터 나열하는 것이 항상 좋은 걸까요..?
또한 나열하면서도 시간과 과정을 조금이라도 단축시킬 수는 없을까요..?
등차수열이나 등비수열이 아닌 순수한 수열 문제에서,
모두가 알다시피 ‘일단 나열해놓고 보는 것’이 정말 중요합니다.
하지만, 문제의 방향성을 염두한 채로 나열하다보면 불필요한 시간을 훨씬 줄일 수 있습니다.
올해 6월 모의고사 15번입니다.
이 문제에서 모든 케이스를 구분짓는 핵심적인 요소는 의 부호입니다.
따라서 우리는 이 부호가 어떻게 전개될지에 모든 초점을 맞춰 풀이를 진행해야합니다.
먼저 모든 상황에서
으로 여기까지는 케이스를 나눌 필요가 없어보입니다.
이제 여기서부터 케이스를 나누어야합니다.
이제 k=1부터 k를 1씩 올려가며
등의 부호에 따른 케이스를 나누어보아야합니다.
상당히 번거로운 과정이 될 것 같습니다.
그 전에 풀이를 단축시켜줄 수 있는 규칙성이 있는지 살펴보는 것이 좋을 것 같습니다.
먼저, 과연 모든 항들의 부호가 서로 독립적일까요..?
혹시나 에 숨겨진 규칙이 있는지 살펴봅시다.
위와 같이 식을 변형해보고, 이 세 가지만 놓고
각각의 경우에 어떻게 전개되는지 대략적으로만 살펴봅시다.
만약에 이라면
이므로
입니다.
즉, 음수항 다음 항이 양수항이라면 그 다음 항은 다시 음수항이 됩니다 ... ㄱ
또한,가 전부 음수라면
"어..? 그렇다면.?"
... 이를 통해, 음수항에서 양수항으로 바뀔 때까지
음수항(이후 첫 양수항도 포함)에서 각 항들끼리의 차이는 공차가 2인 등차수열임을 알 수 있습니다 ... ㄴ
마지막으로, 만약 3~6번째 항에서 0이 하나라도 나온다면
이므로 더 살펴볼 필요가 없습니다
... ㄷ
우리는 ㄱ, ㄴ, ㄷ세 가지를 염두한 채로 최대한 빠르게 모든 경우들을 파악해볼겁니다.
k=1일 때,
이므로
성립X (- + + -) (ㄱ 활용)
k=2일 때이므로
성립X (ㄷ 활용)
k=3일 때, 이므로
성립O (- + - -)
k=4일 때, 이므로
성립X (ㄷ 활용)
k=5일 때,이므로
성립O (- - + -) (ㄱ, ㄴ 활용)
k=6일 때, 이므로
성립O (- - - +) (ㄱ, ㄴ 활용)
k=7일 때, 이므로 성립X (- - - -) (ㄴ 활용)
k>7일때도 전부
(- - - -)일 것입니다.
따라서 가능한 k는 3, 5, 6 뿐입니다.
우리는 나열을 하면서도, 몇가지 규칙을 미리 염두해두어 케이스를 나열하는 시간을 줄이는데 성공했습니다.
한 문제만 더 살펴봅시다. 2023년도 수능 15번입니다.
이 문제에서는, 모든 케이스를 구분짓는 핵심적인 요소는
이 3의 배수인지 아닌지의 여부입니다.
먼저, (가)를 보고
은 3의 배수가 아니기에
일 것이라고 먼저 확정해야합니다.
(나)를 본 뒤,
이미 모두가 알고 있는 ‘일단 넣고 보자’ 식으로
먼저 대입을 해봐야 합니다.
그러나, 만약을 시작으로 전개를 하려고 하면,
너무 많은 경우의 수가 나옵니다.
그래서 보통 해설을 보면 통상적으로부터 역추적하는 방법을 사용하곤 합니다.
그러나, 현장에서 이 문제를 직면했을 때 부터 역추적하는 것은 상당히 리스크가 있습니다.
어디까지 역추적해야 문제가 끝날지
해보기 전까지는 모르기 때문입니다.
(물론 결론적으로는 5번째 항까지만 살펴보아도 답이 나오도록 문제가 설계되었지만,
저의 경우 문제를 처음 현장에서 직면했을 때 역추적이 언제 끝날지 모르는 불확실성을 회피하고자 아래와 같은 방법을 사용했습니다.)
그렇다면 우리는 어디를 시작으로 전개해보아야 할까요?
모릅니다.
무슨 소리냐고요?
우리는 어느 항들이 3의 배수를 가지는지조차 모르고,
안다고 한들 그 항에 3분의 1을 곱했을 때 또 다시 3의 배수가 나올지 아닐지조차 모릅니다.
그래서 우리는,
3의 배수이면서, 1/3을 곱했을 때 더 이상 3의 배수가 아니게 되는 어떤 항을
k번째 항이라고 가정해놓고,
라고 설정한 뒤 거기서부터 나열해보는겁니다.
이렇게 설정해놓은 뒤 라고 하면, 문제없이 1~k번째 항은 자연수가 되므로 ‘모든 항이 자연수인가?’에 대해서도 걱정할 필요가 없습니다.
이제 에서부터 전개해보면
... 5항 주기로 반복됨을 알 수 있습니다.
이므로, 40이 1, 4, 5의 배수임을 고려해보면
또는
또는
을 만족할 것입니다.
k=4일 때,
그러므로
k=5일 때,
그러므로
k=6일 때,
그러므로
따라서의 최댓값과 최솟값의 합은 224입니다.
순수한 귀납적 추론을 요구하는 수열 문제에서
‘나열하면서 규칙 확인해보기’는 필수입니다.
그러나, 단순히 아무 생각없이 나열하는 것 보다는
상황에 따라 어떤 식으로 흘러갈지 대략적으로 추측해보고,
부호 / 3의 배수 여부 등 문제의 상황을 가르는 핵심 요소에 집중하여 이와 관련된 성질을 미리 파악하고
나열을 시작하면 훨씬 문제를 푸는 과정과 시간이 단축됩니다.
그렇다고 해서, 귀납적 추론을 요구하는 문제에서 ‘규칙을 반드시 찾고야 말겠어’라는 생각으로,
나열을 하지도 않은 채 모든 규칙을 찾아내려고 무모하게 시도하는 것은 오히려 시간 낭비일 수 있으므로
귀납적 추론을 베이스로 깔고 가되, 언제나 문제의 방향성을 염두해 둔 채로 수열 문제에 접근했으면 좋겠습니다.
현재 저희 Team BLANK의 기출문제집 제작이 70% 이상 완성되었습니다.
저희는 기출문제집은 엄밀한 논증 또는 해설지다운 해설보다,
직관을 사용하여 최대한 간결하고 깔끔하게 문제를 해결할 수 있는
해설을 여러분들께 제공합니다.
많은 관심 부탁드립니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://shor.kr/2fm
-
수학 1 이번에 꼭 맞아야지 국어도 등급 올려보고요
-
방구나왓음
-
그날이 수업 젤적은 날인데;;;;;;;;;;;;;
-
닉 9
어떰
-
6월 3일 말고 10일로 조정되려나요? 나름 수험생 입장에서 중요한 이슈인데
-
감기 걸림 1
아파 ㅠ
-
현재 군수 중입니다. 군대에서 26 수능 응시하고 사회에 나와서 27 수능...
-
현역은 재수의심정을 이해하지못함 재수는 삼수의심정을 이해하지못함 인서울을 목표로...
-
아 대성콘서트도갈걸
-
6모전까지 1
6모전까지 국수에 많이 투자할려는데 사탐에서 사문은 리밋+마더텅 생윤은 리밋+기시감...
-
혼 자 울었다..
-
일반인은 작은 나사가 여러개 빠져있다면 공부를 존ㄴ나 잘하는(어중간x)애들은 ㅈㄴ...
-
도로에서 어떤 고양이가 누운 상태로 폴쩍펄쩍 뜀.. 근데 그러면서 주변으로 피가...
-
후드티 반만 쓰고 자던 잇올붕이.. 카와이..
-
내신 과탐 수특 1
내신 준비용으로 수특 풀려고하는데 수특 올해랑 작년꺼랑 뭐 푸는게 좋을까요?...
-
쭉이어서만드시는분께오천덕을드리고저는과제하러감미다
-
내가 저능아임;
-
저격조차 못당하는 옯아싸 중붕이는 꺼이꺼이 울었어...
-
어지럽군
-
더이상 오르비에 사진 올리면 내 이미지가 이상해질거 같다
-
에휴 7
-
허허허 다들 잘 놀고 있거라. 나는 조선의 인구를 늘리고 오겠다.
-
라면스프밥 낋여오니라 11
만들기 귀찮아
-
운동 / 공부 / 사회생활 / 과외 / 세 끼 꼬박꼬박 챙겨먹기 / 롤 이거 어케...
-
글 쓴 적이 있었구나 서랍 정리하다가 노트 발견함
-
확통 3개 공통 3개 틀렸습니다 미친개념 들어가도 괜찮을까요? 아니면 다른 걸 좀...
-
집안일은 제가 다 할께요
-
내신 중간 시험범위 1,2+3단원 혈액형인데 변별 어떻게 할까요 1 2단원이 쉽다고...
-
이 재 명 님께서 찢어버린답니다
-
김상훈쌤 문학론듣고있는데 강의는만족중
-
한석원 펀더멘탈 4
수2 고민중인데 후기점
-
천천히 하나하나 풀다보면 거의 다 맞네요 아 비에이비오 아 이걸 왜 최근에 ㅇㅏㄹ았지 아
-
안그러면 다 찢어버리겠읍니다
-
이미지쌤 커리로 미친기분 + 미친개념 병행하려고 합니다,,수특 레벨1은 다 맞고...
-
네.
-
4규 시즌1 다음에 풀만한 N제 2개만 추천해주세요!! 1
2~3등급이 4규 다음으로 풀만한 N제 추천해주세요!!
-
리플 지금이니 0
좀만 더 사볼까
-
말투가 왜 그런지는 나도 ㅁㄹ
-
엄마 등골 파먹는 한수지인가 심천지n수생한테 거지소리 들으니까 슬프네 ...ㅠㅠ
-
국어 인강 듣다가 쌤이 공차를 찾으라는데 뭔소리임? 2
뭔뜻이야?
-
거의 만점권이여야 되나요?
-
공부관련 질받 33
ㅇ
-
수영 못하는데..
-
3덮 0
수학 (나)조건의 발문이 이해가 안갑니다... 처음에 계산할 때 (나)조건을 연필을...
-
고딩들 학교에서 짝남/짝녀 가능성 확인하는법 알려줌 4
일단 학교 분위기가 어느정도 다들 대학 갈 생각 있는 분위기여야 함 짝남짝녀한테...
-
다들 2
사이좋게 지내요

수열 꿀팁 개추기출문제집 정말 기대가 되는군요
헉

바로구매할게요8개년 평가원기출을 수록한다 하셨는데, 선별문제들인가요?
아님 8개년 평가원 준킬러,킬러를 다 포함하신 문제집인가요?
빨리 나왔으면..ㅠㅜ