-수II, [미소변화율을 논함 3] • 적용 편
게시글 주소: https://orbi.kr/00067262933
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 두 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
1번 문제
-東京工業大学(도쿄공업대학) 본고사 중 발췌
14. a>0, t>0에 대해 정적분 S(a,t)를 생각합니다.
(1) a를 고정했을 때, t에대한 함수 S(a,t)의 최솟값 m(a)를 구하시오. [4점]
(2) 다음 극한을 계산하시오. [2점]
2번 문제
-18.03.30 수학 가형
30. g(x)의 극댓값과 극솟값의 차이를 구하시오. [4점]
다 정하셨나요?
제가 두 문제를 처음에 보고 든 생각을 그대로 적자면
"함수가 간단하네요? 피적분함수는 그릴 수 있다면 그려보는 편이 좋겠어요. ->
1번 문제는 조건에 따라 a를 상수 취급하고 t가 움직임에 따라 관찰해보고,
2번 문제는 x와 y=f(x)를 움직이며 관찰하면 되겠군요!
두 문제의 공식 해설은 다음과 같습니다.
(ハイレベル 数学iii•C 중 발췌)
역시 계산은 조금 많지만, 흠잡을 곳 없는 자명한 풀이입니다.
그치만 저희에게는 이전에 학습한 미소변화율 개념이 있고, 이를 이용한다면 단축할 수 있겠다는 생각이 드네요.
*못 보신 분들을 위한 이전 화 링크입니다.
-수II, [미소변화율을 논함] : https://orbi.kr/00066494675
-수II, [미소변화율을 논함 2] : https://orbi.kr/00066523574
두 문제 모두 절댓값이 끼어 있는 정적분으로 정의된 함수이기에, 구간을 나누어 넓이함수를 구하고 미분하는게 출제의도일 테지만,
적분 값을 넓이로 시각화하여 관찰하면 넓이함수의 증감을 바로 알 수 있어요.
2번 문제가 1번 문제의 업그레이드 버젼이기에, 2번문제를 분석하고 1번문제의 해설은 아래 Solution에 추가했어요
|f(t)-f(x)|를 구간 [0,x] 에서 적분한 함수가 g(x)이니
조금씩 x를 키워가며 넓이함수를 관찰하겠습니다.
이 행동의 핵심은 다음과 같습니다.
[0<x<1]일 때 x가 커짐에 따라 y=f(x) 기준선은 위로 올라가며, 넓이의 왼쪽 부분 A는 빨간 형광펜만큼 계속 증가함을 알 수 있습니다.
즉 g(x)는 [0<x<1]에서 증가합니다.
X=1을 넘어서는 순간 기준선 y=f(x)의 운동방향이 아래로 바뀌고, x가 진짜 엄청 미세하게 커짐에 따라 A부분의 넓이는 파란 형광펜만큼 줄고, B 부분의 넓이는 빨간 형관펜만큼 늘어납니다. * 파란 형광펜 부분을 dA, 빨간 형광펜 부분을 dB라 하겠습니다.
기준선이 아래로 이동한다고 할 때, 사진에서 더 움직여도 감소하는 넓이 dA가 증가하는 넓이 dB보다 크기에 총 넓이함수는 (1<x<1+ε) 에서 감소합니다. *(ε는 적당히 작은 양수)
즉 g(x)는 (1<x<1+ε) 에서 감소하며, X=1에서 넓이함수의 증감이 바뀌므로 x=1에서 극대입니다.
이후 언제가 넓이함수의 증감이 다시 바뀌는 지점일까요?
dA>dB일땐 쭉 감소하다가 dA = dB를 거쳐 dA<dB이면 증가하겠군요.
즉 넓이함수의 극소는 dA = dB 일 때겠군요. +(사족)이로 대강의 g(x)의 개형도 그려낼 수 있습니다
(TMI) 실제로 그린 g(x)의 개형 (A의 자취)
dA와 dB는 x좌표 차이가 가로인 미세한 직사각형인데, 세로는 함께 같은 속도로 움직이니 같다고 하면 x좌표차이가 같은 부분이겠군요.
X절편 차가 동일함 + 함수가 x=1 선대칭임을 이용하면 극소가 x=4/3에서 생김을 알 수 있고 적분을 계산하면 답을 얻을 수 있습니다.
Solution) 02번 문제
Solution) 01번 문제
(저는 1번 문제의 함수 표현 S(a,t)가 마음에 들더군요..! 한 변수 고정하는 부분을 언급하지 않았어도 두개 이상의 변수 *특히 기하(평면벡터)등에서 스스로 한 변수를 고정하고 다른 하나를 움직여 보면 좋아요! )
긴 글 읽어주셔서 정말 감사합니다! :D
정성이 들어간 글인 만큼 여러 번 연습하면 꼭 본인의 것으로 만들 수 있을거에요
0 XDK (+28,000)
-
17,000
-
5,000
-
5,000
-
1,000
-
변표이슈는어떻게됬엇
-
영어도 순서배열 삽입 1번 정답뜨면 극악으로 내려갈듯 2
대부분 3-4번 찍거든 꼭 난이도 조절이 불수능이 아님 정답분포도만으로도 확 내려갈수도 있음
-
몇개 추가 완료
-
이거 계속 보임 방금도 봄
-
전통놀이 노잼
-
정답 낮은 문항 보면 1이 답인경우가 개마늠 특히 개념문제
-
안녕하셈뇨 9
갑자기 생각나서 오랜만에 들어와봤음뇨
-
수학 - 이미지 미친기분 수1수2확통 국어 - 나랏쌈말 보는 중 영어 - 이영수t...
-
그 시간에 그냥 본인 하고 있는 탐구 등급을 올려.. 쫄리면 튀는거지 본인 하고...
-
1만원 날린...
-
잠잠해졌다 0
-
ㄹㅇ..
-
그냥 공상하다가 딱 든 생각인데 막을 방법이 없을 것 같은데요ㄹㅇ 어디 떠들고 다니는거 아니면
-
한 과목씩 비교하면
-
또 뭔일임 0
왜 이딴걸로 싸우고있지 이해가 안가네 제 점메추나 해주세요 이게 더 건강한 고민임
-
카톡 선물 쓰고 싶은데 ㅅㅂ 이 동네에 매장이 없음 3
좆같은 촌동네 이제 열흘 남았는데 아 ㅈㄴ 귀찮네
-
사문은 ㅈㄴ 꿀임 16
다른 사탐과는 격이 다름
-
진짜임
-
아니 풀면서 뭔가 다른게 맞기보단 이상한 하나를 캐치는 하긴 했는데 뭔가...
-
본인 화2생2화1생1지1사문 수능공부 해봤는데 생2>화2>>생1>>지1...
-
사문 표본 관련 질문 12
시대인재 4월례고사 사문 등급컷임 동사,세사는 역덕들 땜에 1컷만 높게 형성 된 것...
-
의대버리고 설경 goat.
-
5모 생명 2
여러분 혹시 5모 생명이 그렇게 쉬웠나요? 난 좀 빡빡했는데 왜 다 해강에서는...
-
퀄모, 서바 말고 뭐 있나요?
-
아니 3
ㅋㅋ
-
차피 1년반 지나면 다 통사,통과,확통으로 시험치잖아
-
그냥 작수 물리 올해는 사문하는 사람의 솔직한 후기라고 생각해주십쇼 작수 물1 48...
-
물화<<망한지 오래 생<<<빠르게 침몰중 지<< 작수 꼬라지보면 올해 ㅈㄴ 두려움...
-
음음
-
신성규쌤 고트네 6
유튜브 5모 풀이 보는데 감탄함요 ㄷㄷ
-
왤케 풀발하고 달려들지
-
너와 찍은 사진 한 장에도 난 세상을 가졌어
-
나 아직까지도 2개 다 사탐했으면 하는 후회하고있어
-
ㅈㄴ 일찐상임 하...
-
메디컬 목표 아니면 사탐으로 돌리셈 특히 국수 안된 인간들
-
[단독] “키움 김혜성아, 느그 아부지 돈 갚으라 전해라” 고척돔 김선생 또 벌금형 [세상&] 4
LA다저스 김혜성 아버지에 1억원 채권 명예훼손 혐의…2019년에 벌금 100만원...
-
수업듣고 복영도 다시들으심? 다시들어서 리마인드되는거말고는 없는거같은데 수럽이 어렵긴해서 고민임
-
작수 물리 48 지구 35 사문은 6모전이라 응시한 시대 월례고사로 대체함 둘다...
-
질문을 하면 많은 사람을 긁을수도 있을거 같다 어떻게 하지
-
입시 고수분들 최대랑 최소 알려주세요 국 수 영 생윤 사문 백분위 96 84 1 94 96
-
ㅇㄷㄴㅂㅌ
-
너네 미적 선택해라 우리 공정한 수능을 쳐야지 확통 사탐은 너무 날먹이잖아 미적...
-
부산대는 언급안함.. 슬픔..
-
쌍지합시다 9
국수 범부를 문디컬로 보내준 레전드 꿀 과목
-
걍 사탐 대가리 박는게 맞는듯 아무리봐도 개꿀인데
-
사탐이 4
과탐보다 절대적으로 쉬운 것도 맞고 표본 수준이 매우매우 낮은 것도 맞는데 그래서...
-
화1 리즈시절 6
화1 선택자가 지구과학1+2 선택자보다 많았던 시절

기하황 약연님
아직 배울 점 많은 반실수입니다드디어 적용탄이 나왔군요 가장 기대하고있었습니다 진짜 이칼럼은 제 수학의 시각을 넓혀줬으니 잘보겠습니다
저야말로 영광이네요! 궁금하신 점 있으시면 편하게 물어봐주세요 :)
선댓후감
미소변화율 항상 재밌게 보고 있습니다
감사드려요 선생님 :)

이륙시스템 재가동
고마워요 승룡님 :D이거보고 주머니에서 공이나 뽑기로했다
왜 평면으로 수선을 안내리고 그런걸

도쿄공대 본고사 ㄷㄷㄷㄷㄷ동경일공의 공 아닌가용

타임어택이 나름 있는 편이긴 하지만 위 문제같은 경우 변별문제까지는 아니고 적당하게 넘어갈 수 있는 문제랍니다
이건 이륙해야한다역시 수학고수
사설 실모나 엔제에서 많이 써먹었는데 많은 분들이 얻어가셨으면 좋겠네요~^^
Sec(x)
짖짜 뇌를 꺼내서 저한테 이식하고싶어요
대 약 연

누추한 곳에 귀하신 분이..!약선생님 좋은 글 감사합니당
저야말로 도움이 되었다면 기쁘네요

감사합니다우와!
대 대 대
한의대 걸어두시나요

다녀요
1년만은 같은 학과네요
저야말로 영광입니다 선배님
누추한 곳에 귀하신 분이....
한의대ㄷㄷ약연님 시.반(국가권력엔수생어쩌고)님이 이거좀 물어봐달랍니다
강의는 마지막에 나온다고 전해달라네요
https://youtu.be/9EOzb5wCSN4?si=3B1ZDrTpoDF_flU-
g'(x)를 수식으로 표현할 때, 미소변화량을 세로가 적당히 작은 직사각형으로 근사하였다고 생각하면 가로 × 세로인데, 도함수의 정의가 접선의 기울기이고, 접선의 기울기를 삼각비로 표현하면 아래 그림처럼 델타h/델타x로 표현할 수 있고, 델타S = 길이 × 델타높이 인데 양변을 델타x로 나눠 표현하면
넓이의 미소변화량 = 가로길이 × 도함수가 되는군요!
단! 이 경우는 기준선의 운동방향이 축과 평행하게 고정되어 있어 미세한 직사각형으로 근사, 위와 같이 도함수를 직관적으로 뽑아낼 수 있는것이지, 미소변화율 칼럼 1편의 극좌표에서의 근사에선 사용하기 곤란하군요..
헉 이걸 이제보다니..
미소변화율 3도 잘 보고 갑니다..ㅎㅎ
저야말로 도움이 되었다면 기뻐요

누추한 곳에 귀하신 화내지않기님이 오시다니요영광이에요
미소변화율에서 도함수값을 구할 때 이렇게 변수가 상수라서 일직선으로 움직이는 경우에는 길이가 넓이변화율 즉 도함수값임을 알겠는데 위 가형30번이나 저번 칼럼 ebs문제처럼 변수가 기울기라던지 직선이 아닐 때에는 길이=변화율(도함수값)이 성립하는지 아니면 어느정도 바례하지만 정확히 일치하진 않는 건지 궁금하네요
지난 칼럼의 경우 아래 이미지처럼 기울기를 조금씩 키우며 미소변화량을 닮음 삼각형(혹은 부채꼴)로 "근사"하였기에, 도함수값을 정확히 추출할 수는 없지만, 증감 변화의 경계가 되는 극값을 찾기는 가능한 것이에요.
다만, 위 사관학교 문항 혹은 이번 칼럼의 문항처럼 미소변화량이 축과 평행/수직한 경우에 한해서 극값조사와 더불어 도함수값을 길이로 추출할 수 있는것입니다.
:)
궁금증이 해결되셨기를 바라며, 혹시 더 궁금하신 점 있으시면 편하게 물어봐주세요