[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
게시글 주소: https://orbi.kr/00067233031
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이왜진???
-
주인 잃은 레어 5개의 경매가 곧 시작됩니다. 디맥 리스펙트 V"네오위즈에서 개발한...
-
웃긴게 얘 게이인걸 여자친구한테 들킴 ㅋㅋㅋㅋ 그냥 양성애자 아닌가 싶은데 그냥...
-
개뻘글에 어그로 너무 많이끌려서 위험느끼고 튑니다 안녕히 주무십쇼 6
하 이미지 어카냐 진짜
-
오야스미 2트 1
네루!
-
나보다 멍청한 애 많음 ㅋㅋ
-
우리아빠도엄마도아니면서 존나이래라저래라냐 말싸가지가 좃같은건 니들이 친척집 올때마다...
-
새벽에 심심해서 갑자기 합격증 올리기 .. ㅎㅎ 목표가 중경외시+이화..였어서...
-
그때 활동하던 양반들 다 떠났구만..
-
ㅈㅅㅇㅂ 난 진짜 여르비 거기다 아이돌급 외모일줄은 꿈에도 상상 못함
-
심연이니까 취향선택좀 12
후타나리 vs 쉬메일
-
아빠안잔다. 5
나 ㄹㅇ 왜안잠? 시간 늦어지면서 아이큐 실시간으로 떨어지는중
-
도플러효과에서 헤맨 난 저능아
-
ㄹㅇ 황근출해병님과 전우애 실시하나요?
-
수능볼까요 11
말까요
-
주위에 레즈는 꽤 있음 15
게이는 못 봄
-
원래 계획은 미적 단과수업 + 스스로 수분감 풀면서 병행 이었는데 이번에 시대인재...
-
사랑해요
-
LGBTQ+ 3
-
이걸로 구별 많이 했었는데
-
먼가 무능한 남자 1같음
-
일어난김에 2
아예 일어날까 배고프고 잠이 안와
-
그냥 눈팅만좀 해보고싶은데
-
반수할까 2
미치겠다 진짜
-
숭실대가 떴노ㅋㅋㅋㅋ 아...인생..
-
난 게이 존중해 5
님들도 그렇지?ㅎㅎ
-
한양대가 떠버렸노 ㅋㅋㅋㅋㅋㅋㅋ 고3 9모 57589였음
-
얼굴 오르비언처럼 생긴분 나올줄 알았는데 생각보다 예쁘셔서 놀랬던
-
서울 가고 싶다 4
클럽 가고 싶어
-
훌륭한 사업가가 되는법??
-
고려대 너무 조아
-
게이더로 판독 가능
-
하아아아악 고양이가 이김
-
카톡 어차피 안와서 넣어논거임 ㅋㅋㅋㅋㅋ
-
집에서 과제할때만 필요한거임? 아님 매일 챙겨야되나?... 노트북 들고 두시간 통학...
-
라이브는 강의비는 저렴하던데 교재나 컨텐츠 이런거 다하면 보통 얼마나오나여 개학하면...
-
문과로 0
바꿀건데 확통노베면 미적은 그대로하는게 나을까요 미적을 잘하진않지만 확통은 아예노베라
-
현실에선 국숭세 부경인아곽 이 라인이 몇프로인가요? 4
한 15프로 하려나
-
좀 과한가 삼성 정품 65W 트리오 충전기임
-
이정도면 아싸히키맞냐?
-
흐흐흐ㅡㅎ
-
나도 자야겠네 13
-
난 갔을때 그냥 상담 조금하고 약 처방 받았는데 검사같은건 원래 딱히 안하는거임?
-
기대된다
-
잠이 안 옴 9
진짜 어캄
-
아 자다가 깸 17
ㅈㄱㄴ
-
못버티겠다 15
자야지...
-
정혼 당함 3
2학년 1등해서 받은 교육감상 상장 엄마가 카톡 배사 했는데 우리동네 사는 어떤...
-
동물배틀 on 8
고려대 호랭이랑 한양대 사자랑 싸우면 누가이길거같음?
잘쓸께요 흐흐哈哈?哈哈?