-기하, [Z자 꼴을 논함] *221128
게시글 주소: https://orbi.kr/00066964501
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
(*기하 미선택자 분들을 위해 정의 요소 보조선을 그었습니다)
28번. a^2+p^2의 값은? [4점]
다 정하셨나요?
위 문항은 22.11.28로 당시 기하러들에게 충격을 준 문항입니다.
가장 큰 이유론 "정의요소는 사용했는데, 다음으로 앞발을 내딛을 곳을 모르겠다"는 점에서 시간을 소요시켰던 것이죠.
저도 현역때 위 문항에서 막혀 당황스러웠어요. 현장에서 한 바퀴 돌아와서 문제를 다시 읽으며 든 생각을 표현해보겠습니다.
"저기 Z자 꼴만 어떻게 길이를 알면 해결할 수 있을것같아요.. 근데 P, Q 좌표도 모르고... "
아래 그림과 같이 길이가 30인 밧줄이 있다고 합시다.
밧줄을 Z자로 접고, 접힌 부분의 길이가 10이면, 남은 부분의 길이는 20입니다.
Z자꼴의 x성분 길이가 15일때, 겹친부분의 길이 Δ는 모양에 관계없이 5가 됩니다.
이 생각을 문제에 적용하면
아래와 같이 겹친 부분의 길이를 Δ로 두고 쉽게 미지수를 구할 수 있습니다.
Solution)
당연하고 단순한 내용이지만, 수험장에서 새로운 미지수의 도입과 전체 길이에서 겹친 부분을 제외하는 부분적 길이를 묻는 문항이기에,
수I 도형활용, 기하 모두 배워갈 점이 많은 문제라고 생각힙니다!
위 방법과 다른 대표적인 풀이로는 좌표로 해결하는 방법이 있는데, 결국 겹친 부분의 길이를 표현하는데 쓰일 뿐 결론부로 향하는 길은 동일합니다, 다만, 위 과정을 수식으로 표현하느냐, 직관적인 기하로 해석하느냐의 차이라고 생각합니다.
긴 글 읽어주셔서 정말 감사합니다 :D
혹시 더 궁금하신 점 있으시다면 댓글로 남겨주세요!
0 XDK (+12,000)
-
10,000
-
1,000
-
1,000
-
진사람 삭발하고 인증하기 ㅇㅇ
-
혀 닦다가 토함 11
ㅜㅜ
-
나 언제 죽음? 4
하 힘들어 ㅠ
-
1회 62점 2회 86점
-
어림도 없지 시발
-
윤사 기출 1
윤리와 사상 마더텅은 끝냈는데 다음으로 임정환쌤의 임팩트를 할까요? 아니면 현돌의 기시감을 할까요?
-
으흐흐
-
공부용으로 기출지문분석 / 해설집기능만들어봤음요 여기서 더 상세하게 모르는거도...
-
기철햄 들으면 개씹좆노베여도 3등급까지 떠먹여주는데 ㄹㅇ.. 홍보를 안해서 그런건가
-
근데안되는거암
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
올해 초에 오르비 뒤집었다가 탈릅한사람 아닌가
-
그낭 하루종일 놀아버렸어 얼불춤 좀만 더하다 자야지
-
n제 여러권 추천해주시면 감사하겠습니다..
-
얼굴 형이나 하관이 얄쌍한게 외모에 미치는 영향이 큼? V라인이라고하죠
-
먼저 자야겠네요 9
잘자요
-
과연 내년에 입학하고서 연뽕이 얼마만에 빠질까.
-
수학 풀이에 관하여 12
자기 맞는 풀이대로 푸세요 다만, 남(주변이든, 강사, 교사 등 선생님이든..)...
-
공부 안하던데 왜 잘하는거지
-
무슨일 있었는지 쭉 요약해주는 분 500덕 30분까지 제일 상세히 설명해주는 1분께 드림.
-
옛날 유저신가요 1
처음 들어보네요 반응 왤캐 뜨거움
-
25를 그렇게 내고 26을 불로 안낸단게 말이안ㄷ
-
조용하면 커뮤가 아니긴 해
-
비상교육 교과서에는 아예 없네 원래 직접적으로 언급은 안해도 문제로는 있던데
-
네.. 18
-
오늘 산거 10
냄새 ㅆㅅㅌㅊ
-
우우
-
라면추천좀 10
ㅈㄱㄴ 진짬뽕굴진짬뽕스낵면참깨라면진라면 너무많이먹어서 다른거 먹고싶어요
-
잇올 업키 3
성적 한 과목이라도 오르면 해주는거에요?
-
메인 무슨일임 6
왜 저분은 저격당한거죠
-
2028부터 삼각함수 덧셈정리는 간접범위에도 없음? 3
삼각함수 덧셈정리는 만국 공통으로 고딩때 배우고 들어온다고 가정해서 대학교재...
-
3합 6이상인 대학 지원할거고, 과탐1개 반영대학 지원할예정이어서요 수학...
-
오늘도 0
찬우쌤 강의 듣고 마무리 문학 공부까지 해서 너무 좋다. 찬우쌤 사랑해요. 심찬우
-
쇼츠로 보는데 꿀잼
-
국수영탐 백분위 85 94 2 96 91
-
정시가 바늘구멍 된다는건지 아니면 진짜 없어진다는 것인지?
-
무슨 말을 못하겠다 ㄹㅇ ㅋㅋㅋㅋ
선개추 후감상이다옹
저장해놨다가 논술준비할때 봐봐야지

고능아과목 ㄷㄷ
이 게임 할만 해요베트남어 칼럼은 처음보네용 ㅎㅎㅎ
ㅋㅋㅋ
ㅋㅋㅋㅋㄱㅋㅋㅋㅋ

볼 사람이 많을진 모르겠지만 좋은 칼럼이네요
저야말로 감사드려요지금봐도 저때 저건 ㄹㅇ충격이지
저도 예전 가형 타원과 직사각형이 접하는 문제와 함께 손꼽는 이차곡선 문제라고 생각해요..
아 그 문제 답 더러웠던거 같은데ㅋㅋ

2백몇/19였죠 답이ㅋㅋㅋㅋㅋ

대충 땀 흐르기 시작할때근데 왠지 특수각 60도처럼 생겼는데 하고
찍으면 생존하는 문제
PF1과 QF2를 각각 구하려 들면 망한다고 보고 풀이를 시작해야 유리한 듯 싶네요...

정확하십니다 선생님! 각각 구하려고 시도하면 실전에서 심연으로 가버리는 문제죠..한명의 노인으로서 《기벡》이 새록새록 기억납니다

역시 기하 초고수
아직 배울 점 많은 반실수입니다약연님 저 오늘 공간벡터 평면의 방정식 공부했어용 책에 외적 쓰는 법 보고 191113 한 직선과 점 있을때 점을 시점으로 하고 직선위의 두점에 대한 위치벡터 잡아서 외적했더니 ㄹㅇ 법선벡터 나와서 고거 간단한 정수비로 고치고 평방 계수비로 쓰고 세 개 점 중 하나 대입해서 평방구하고 x절편 구하는 문제라 상수 우항에 몰아두고 상수로 나눠서 x절편 구했어요
수능은 아니고 대학 수학 예습차원에서 공부해봤습니당

작성해주신 풀이과정이 명쾌해서 (전 공벡 좋아해요) 보는 저도 기분이 좋아지네요 :D선생님께 조금이나마 도움이 되었다면 저야말로 기쁘네요
예전에 아무것도 몰랐을땐 칼럼보고 개쩐다라고만 생각했는데 이제는 한번 그 내용을 배워볼려구요..답글 달아주셔서 너무 기쁘네요