깡수학으로 푼 10모 수a 29번 문제
게시글 주소: https://orbi.kr/0006647132
조건 1 해석 : 세개의 접선을 가진다.
f(x)= x3+3x2 = x2(x+3)
f'(x)= 3x2+6x = 3x(x+2)
이를 통해 f(x)의 그래프가 (0,0)과 (-3,0)을 지나며 x=-2와의 교점에서 4를 극댓값으로 갖는 그래프라는 것을 알 수 있다. (극소점=0,0)
접선을 구해야 하는 자리는 (a,-4)로 이미 y좌표가 고정되어 있다.
접선 공식 > y=(3t2+6t)x-2t3-3t2
지나는 점 > (-4,a)
대입하면, -2t3-15t2-24t=y 이고, 이때 y=a와의 교점의 수가 존재하는 기울기의 수. 즉, 존재하는 접선의 수가 된다.
g(x)=2t3+15t2+24t = -a
세 접선이 존재하는 지점이어야 하므로, 교점은 3개 이상이어야 한다. (조건 1 해석)
g'(x) = 6t2+30t+24 = 6(t+4)(t+1)
따라서 3차항의 계수가 양수이므로 x=-4에서 극댓값, x=-1에서 극솟값을 갖는다.
그리고, 3차함수의 그래프와 y=-a의 교점이 3개이려면 극댓값>-a>극솟값 꼴을 취해야만 한다.
g(-4)=16 (극댓값) , g(-1)=-11 (극솟값)
따라서 16>-a>-11
조건 1의 최종결론 : -16<a<11
조건 2 해석 : 세 접선의 기울기의 곱이 음의 부호를 가진다.
접선의 기울기 : f'(x)=3x2+6x=3x(x+2)
이므로, f'(x)의 그래프 개형을 추론할 수 있다.
이 때, g(x)=-a와 일치하는 점에서의 x값을 f'(x)에 대입한 것이 접선의 기울기가 된다. 또한 근의 공식을 통해 g(-2)<0임을 알 수 있다.
g(x)=-a의 세 교점의 x좌표값을 작은 수부터 각각 x1, x2, x3라고 하면, f'(x1)f'(x2)f'(x3)<0 이어야 한다.
a의 최댓값은 조건 1에 의하면 11인데, a=11일 경우 f'(x1)만 양수이고 나머지는 음수이므로 곱이 음이라는 조건2가 성립하지 않는다. 따라서 수를 줄일 경우, f'(x1)는 항상 양수이며 f'(x2)가 가장 먼저 음에서 양으로 부호가 바뀜을 확인할 수 있다.
f'(x2)=0이 될 때의 a값을 구하면,
f'(-2)=0, g(-2)=-4
따라서 -a가 -4일 때, 즉 a=4일 때 f'(x2)=0이다.
조건은 f'(x2)>0이므로, -a>-4이다. (=a<3)
따라서, 두 조건을 a가 포함된 부등식으로 연립해보면
조건1) -16<a<11
조건2) a<4
a 최댓값은 3, a의 최댓값이 M이고 문제는 M2을 구하라 하였으므로,
답은 9
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 술배틀에서 이겨버려서 할말은 못들었다고 한다 쟨 영업을 어케하는거야
-
ㅋㅋㅋㅋ 0
-
미쳤다 이건 혁신이야
-
사관학교 파이널 0
광릉기숙학원 사관학교 파이널 들을만한가요??
-
이런거 있나요? 맨날 너무 많이 떨어서 곤란한데..
-
NO STUDY = FAIL STUDY = NO FAIL NO STUDY +...
-
텐션이 안 나와 1
5분 뒤 수업 시작 아 이러면 안되는데 삼성 응원가 긴급 수혈
-
약간 보기를 외워서 시험치는 문학 보기문제 같았음
-
어디어디 가면좋음? 자연계열 희망하는 현여기임 5월 초순 주말에간닾
-
여유롭고 맛있는 점심이나 저녁을
-
강기원이 쳐바름? 둘다 100 안 나오게 난이도 조정하면
-
생윤은 이런거임 0
이과한테 안맞는건 팩트임 하지만 쓴 약을 먹는게 몸에 나쁘진 않음 미친 표본수와...
-
美 “中군사기관, 작년 생물학 무기 연구… AI 등 활용 진전 가능성” 0
인공지능(AI) 및 유전자 편집 기술 등이 발전하며 중국, 북한, 러시아의 생물학...
-
사문이나 생윤 중에 하나 가려고 합니다 생명이 너무 불안해서요 진짜ㅠ 수학보다는...
-
윤 "계엄령은 칼과 같아…칼 썼다고 무조건 살인 아냐" 주장 3
윤석열 전 대통령이 오늘(21일) 자신의 내란 우두머리 혐의 사건 두 번째 공판에...
-
ㅠㅠ
-
세조각부터 못먹겠음
-
독서 문학 순서 1
잘하는걸 먼저/나중에 풀어라 같은 말들은 있는데 둘다 못하면 뭐부터 푸는게 정밴가요.. 진지합니다
-
다들 개념하고 몇 등급 받으셨나요 친구들이 자꾸 개념만 하면 2등급 나온다고 하던대 이거 진짜임??
-
언젠가는 그럴 수도 있을거같은데
-
[속보] `간첩 처벌 못해 뚫린 한국`…또 중국인들 오산 공군기지 `무단 촬영` 0
지난달 경기 수원시의 공군기지 부근에서 전투기를 무단으로 촬영한 중국인들이 적발된...
-
다인자 문제를 풀 때는 항상 대문자 수와 비율에 집중해야 돼요. 다인자 문제에서...
-
활명수가 필요해..
-
학벌주의 심한 한국에서는 여전히 존재하려나
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
건설적인 이야기를 많이 해주셨음
-
요즘 꿈에서 2
27 수능을 치는 내가 보임
-
사실상 국어 문제입니다 지문을 잘 읽어보시길!
-
국어 풀다가 진짜 매우 단순한 한 문장 이해를 못해서 몇분을 쏟아본 경험 있나요 없음말공ㅎ
-
캠핑가고싶다 0
가서 고기 구워먹고싳다
-
뭔가 더 안정감이있달까
-
사이트 ㅊㅊ좀
-
5월동안 할것 0
킬러 기출 회독하면서 발상이나 풀이 흡수하기 +교사경 기출 병행 이러면 6모 치겠네
-
넘빨리닫아 카페들 스벅도글코
-
이 양가적 감정을 시로 써야지
-
확실해도 개강해주세요
-
착한 교수님 2
쁠 채워주는 교수님
-
요양원이나 장애학교 갈바에는 현역 입대할거같고 근무지에 따라서 하루 3시간이상 가능한곳도 있나요?
-
기하 실력 올리고 미기확 다 있는 실모 풀려고 계속 뒤로 미루는 중......
-
좋은이브닌입니다 1
숑숑
-
킬캠 1
올해 3모 수학2등급 받은 현역도 킬캠풀어도 얻어갈게 많은가요? 아니면 그냥 기출...
-
옯만추로 알게된 만년필 친구분이 몽블랑 부티크 가신다고 뭐 보고 싶냐고 물어봐주셔서...
-
씻었으니까 1
닭가슴살 먹고 수학을 흐흐
-
오늘 교황 선종하셨네 세상에
-
현실직시 어떻게 하조.?
-
이 책 재밌음 2
-
6모 전까지 점진적 듣고 매뉴얼 2단계 가능해여?
-
화작 81 :화작 36 40 41틀림,, 미적 60 :순수 실력 이슈.. 영어 90...
헐, 기껏 썼는데 제곱기호 다깨짐
아핫.. 전 조건1만해서 틀렸군요 ㅠㅠ
ㄷㄷ 훌륭하시네요 전 그래프로 풀었는데...
전 그래프로 풀다가 너무 어려워서 수식으로 돌려서 풀었어요!
해설 깔끔하네요! 직관적으로 접선 갯수 f(x)상에서 찾는것보다 이게 교육과정에 좀 더 부합하는 풀이죠 ㅋㅋㅋ수B에선 이미 루틴이기도 하구요..
감사합니다. 저는 답지보고 저걸 어떻게 직관으로 찾지 싶었어요..