극한 계산 때 주의할 점
게시글 주소: https://orbi.kr/00066464692
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
돌이킬 수 없는 또 하루를 이렇게 떠나보내면 오늘도 답을 잘 모르는 질문에 끝없이...
-
3모 69 (틀린건 기억이 안나네요) 4덮 88 (15 22 30) 틀리고 5모...
-
다음교재 어떤걸로 해야될까요? 바로 드릴갈까요?
-
제가 취직하려는건 아니고 아는 사람이 거기 다니는데 아는사람 있ㄴㅏ요
-
데이트 하러 0
이거 들어바
-
생일입니다 6
축하해주세요
-
가천대이상 가고 싶어요 지구 생명하다 6찍고 사탐갑니다 지구 생명도 인강듣고...
-
개념량 둘다 비슷비슷 계산량은 화1이 많다쳐도 화1은 개념 말장난은 많이 없는디...
-
개념량 둘다 비슷비슷 계산량은 화1이 많다쳐도 화1은 개념 말장난은 많이 없는디...
-
모고성적잘나오더니 요즘또 안나오고 할일은 많고 6모는 얼마 안남았고 너무지친다...
-
그냥 뭔가를 하기가 싫음
-
아침수업 개힘들어서 옮기려고 오후반 대기 넣었는데 480이면 그냥 안된다고 봐야겠지 ..
-
오랜만이다....
-
굿모닝 7
-
스블 1
뉴런보다 좋나요?? 아니면 비슷하나요
-
스불 0
뉴런보다 좋나요?? 아니면 비슷하나요
-
대치가쟈 0
으아 피곤해
-
인쇄하는 곳 있나요? 레이저 인쇄로 해서 괜찮긴한데 두께가 너무 종이같네요 빳빳하고...
-
우울할땐 혼자만의 시간을 가져라 성찰해라 이러는데 그냥 하루 꼬라지내고 12시간동안...
-
어제 오자마자 곯아 떨어져서 까먹은...
-
이렇게 풀면 답이 안나오던데 이유가 뭘까요? ㅜㅜ
-
우울증이 좀 많이 나아진듯 오늘 언제 잘진 모르겠는데 자고 일어나서부터는 다시...
-
정상화라고 쓰고 그냥 악깡버라고 읽으셈 레전드 리버스 패턴이였는데 바로 지금...
-
내 뇌 어떡해
-
밀봉력과 개봉편의성은 공존할 수 없는 것인가
-
과자깠던건 기억이 나는데 갑자기 5시임 ㅋㅋㅋ
-
저능충 1
사랑해♡
-
수학황 강림 기원... 서바 고난도문제 풀이 바랍니다 12
원래 전국서바 일케 팍팍하나요ㅠ 20번 문제인데 거의 22번느낌... 풀이...
-
쉬싸고옴 1
쫌만 기둘리라고~
-
밖에 아침이라고 새들 짹짹대고 잇네,,,,
-
야함 대물 자지 보지
-
잘자료 4
-
노추 27
노엘과 결혼하고싶음
-
다들 꾸준히 노추글 올려다오…
-
오늘은 죄송합니다...
-
수위 높으면 절대 안됨
-
오노추 4
이제 15년전 게임이네… 진짜 그립읍니다…
-
슬슬 오르비 0
화력 떨어지는거 느껴지면 개추
-
근데 안될걸 알음
-
아무나 가져가셈 10
뿌링클 씹극혐해서 걍 나눔함
-
지2 한 번 응시해봤는데 솔직히 개념만 대충 1주 하고 최근 기출 3개만 풀었는데...
-
엽떡 좋아하는 사람은 개팰거임
-
떡볶이 먹고싶다 9
엽떡 신전 프렌차이즈 말고 휴게소에서 파는 고추장맛 나는 떡볶이 이쑤시개로 찍어먹어야되는데…
-
아닌가
-
저처럼됨
-
절망의 크기와 눈물의 크기와 아무것도 안하고 먹은 나이밖에 없네
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요