2024학년도 수능 수학 소위 킬러문항 사례
게시글 주소: https://orbi.kr/00066454767
24수능 킬러문항 사례 (책참) 초본.pdf
2023년 6월 교육부 킬러문항 사례.pdf
잠도 안오고 집에도 가고싶고 해서
전문성은 없지만 그럴싸해보이는
문서 하나 작성해봤습니다.
지난 6월 교육부가 발표한
킬러문항 사례 문서 참고했습니다.
재밌게 봐주시고 반박 시 당신이 맞습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[물2] 5모 12번 - 진자운동, 이정돈 외워두자 2
처음부터 다 계산한다면 상당히 귀찮은 문제입니다. 원뿔 진자운동의 주기 공식을...
-
1일차
-
45만덕인데 고민되네
-
반갑다 10
심멘이다
-
확실히 5모는 제대로 독해하면 개병신되는 시험이네 ㅅㅂ 16
이해 꼼꼼히 하고 넘어가면 뭐함 대다수 문제들이 답을 퍼줘서 발췌 눈에 바른 애들이...
-
전문항이 교체되지는 않죠???
-
기하 어렵게 냈던 시절이 그립습니다 그 때 문제 재미있었는데요
-
작수 7번은 틀릴 소지조차 없는데 왜 저렇게 많이 틀림 9
아니 진짜 비틱이 아니라 왜 그렇게 오답을 많이 찍었는지 알아야 학생들을 지도를...
-
족보닷컴 2,3학년 선택과목 푸는거 좀 ㅈㄹ임? 국어 문법은 꼭 평문 자습서...
-
9시 잇올 실패 3
ㅈㅅㅎㄴㄷ 너무 피곤해서 더 잤어요 챙겨서 나갈게요
-
돌이킬 수 없는 또 하루를 이렇게 떠나보내면 오늘도 답을 잘 모르는 질문에 끝없이...
-
3모 69 (틀린건 기억이 안나네요) 4덮 88 (15 22 30) 틀리고 5모...
-
다음교재 어떤걸로 해야될까요? 바로 드릴갈까요?
-
제가 취직하려는건 아니고 아는 사람이 거기 다니는데 아는사람 있ㄴㅏ요
-
데이트 하러 0
이거 들어바
-
생일입니다 6
축하해주세요
-
가천대이상 가고 싶어요 지구 생명하다 6찍고 사탐갑니다 지구 생명도 인강듣고...
-
개념량 둘다 비슷비슷 계산량은 화1이 많다쳐도 화1은 개념 말장난은 많이 없는디...
-
개념량 둘다 비슷비슷 계산량은 화1이 많다쳐도 화1은 개념 말장난은 많이 없는디...
-
모고성적잘나오더니 요즘또 안나오고 할일은 많고 6모는 얼마 안남았고 너무지친다...
-
그냥 뭔가를 하기가 싫음
-
아침수업 개힘들어서 옮기려고 오후반 대기 넣었는데 480이면 그냥 안된다고 봐야겠지 ..
-
오랜만이다....
-
굿모닝 7
-
스블 1
뉴런보다 좋나요?? 아니면 비슷하나요
-
스불 0
뉴런보다 좋나요?? 아니면 비슷하나요
-
대치가쟈 0
으아 피곤해
-
인쇄하는 곳 있나요? 레이저 인쇄로 해서 괜찮긴한데 두께가 너무 종이같네요 빳빳하고...
-
우울할땐 혼자만의 시간을 가져라 성찰해라 이러는데 그냥 하루 꼬라지내고 12시간동안...
-
어제 오자마자 곯아 떨어져서 까먹은...
-
이렇게 풀면 답이 안나오던데 이유가 뭘까요? ㅜㅜ
-
우울증이 좀 많이 나아진듯 오늘 언제 잘진 모르겠는데 자고 일어나서부터는 다시...
-
정상화라고 쓰고 그냥 악깡버라고 읽으셈 레전드 리버스 패턴이였는데 바로 지금...
-
내 뇌 어떡해
-
밀봉력과 개봉편의성은 공존할 수 없는 것인가
-
과자깠던건 기억이 나는데 갑자기 5시임 ㅋㅋㅋ
-
저능충 1
사랑해♡
-
수학황 강림 기원... 서바 고난도문제 풀이 바랍니다 12
원래 전국서바 일케 팍팍하나요ㅠ 20번 문제인데 거의 22번느낌... 풀이...
-
쉬싸고옴 1
쫌만 기둘리라고~
-
밖에 아침이라고 새들 짹짹대고 잇네,,,,
-
야함 대물 자지 보지
-
잘자료 4
-
노추 27
노엘과 결혼하고싶음
-
다들 꾸준히 노추글 올려다오…
-
오늘은 죄송합니다...
-
수위 높으면 절대 안됨
-
오노추 4
이제 15년전 게임이네… 진짜 그립읍니다…

7ㅐ추솔직히 241122는 역대 22번 중 제일 joat라고 생각
개인적인 선호도가 낮다는 뜻? 어렵다는 뜻? 공부할 가치가 없다는 뜻?
문제 자체가 별로임
더럽다고 해야하나
저는 190630(나) 문항 (나) 조건 느낌 오랜만에 받아 좋았는데 네모 박스 조건부터 해석하고 주어진 미분계수 조건 2개 적용하려면 f(x) 개형을 수십개를 그려봐야 상황 파악이 가능하다 느꼈습니다, 220622처럼 위에서부터 순서대로 정보 처리해도 정답 상황을 충분히 경우의 수 분류해낼 수 있도록 출제했어도 좋지 않았을까 하는 개인적인 감상
f(x) 개형 찾고 조건 충족 확인 -> 틀리면 반복
이 과정이 너무 많이 필요했어서 현장에서 멘탈 갈리기만 좋은 문제였던 거 같아여 별 의미가 있는 거 같지도 않고
실제로 경우의 수 5-6개 하다가 안 돼서 제가 그랬고...
저는 현장 응시는 못했지만 개형 한 10개 그려봐도 도대체가 조건을 언제 만족하는지 모르겠길래 한 달 가까이 방치해뒀었네요 ㅜㅜ 미분계수 조건부터 바라보아 -1/4, 1/4라는 수의 특수성에서 ..., -1, 0, 1, ...의 특수함을 발견하는 것이 아니면 현장에서 답 내기 현실적으로 어려웠다 생각합니다
오히려 역대 22 중 가장 수능의 정의에 가까운 문제 아니었나 싶은데요
조건이 쓸데없이 더러운 것도 아니고 추론도 많이 요구하고
헉
팩트)
미적29처럼 미지수가 4개인 연립일차방정식은 교육과정에서 다루지 않음
애초에 3개인 것도 안다룸 ㅋㅋ
킬러문항의 기준은 A이다 --> 왜 대통령실 말과 다른가?
킬러문항의 기준은 B이다 --> 24수능에도 존재하지 않는가?
비슷하게
위급 상황이었다 --> 왜 부산대 병원에서 수술을 받지 않았나?
위급 상황이 아니었다 --> 왜 응급 헬기를 탔나?

혹시 본문 폰트 알 수 있나요? 가독성이 좋네요'마포꽃섬'으로 알고 있습니다! 서울시 마포구에서였나 서울시에서였나 제작했던 것 다운받은 거로 기억해요

극좌표계의 이중적분...? 의 의미가 무엇인지 간단하게라도 설명해주실 수 있으실까요..?검색해 보았는데, 극좌표계에서 영역 구할 때 넓이를 구할 수 있다고 하는데
그러면 이걸로 확률밀도함수를 적분하는건가요?
(진짜 모름)
우리가 보통 사용하는 직교 좌표계, 데카르트 좌표계에서의 적분을 극 좌표계에서의 적분으로 바꾸는 방법이고 상황에 따라 계산을 더 쉽게 혹은 가능하게 할 수 있습니다.
직교 좌표에서 (x, y)로 나타내어지는 점은 극 좌표에서 (r*cos@, r*sin@)로 나타내어집니다. r은 직교 좌표 상에서의 주어진 점과 원점 사이의 거리이고 @는 원점과 x좌표가 양수인 x축 위의 점을 이은 선분으로부터 시계 반대 방향으로 잰 원점과 점 (x, y) 을 이은 선분까지의 각의 크기입니다. (표현이 정확할지 모르겠는데 수학1에서 일반각 정의하는 그 느낌)
이를 이용해 다음과 같은 연산이 가능합니다!