현우진T 조교분이 실수하신거 같은데 맞나요
게시글 주소: https://orbi.kr/00066156261



2025 수학II 시냅스 문제인데 문제에서 함수 g(x)가 x=a 에서만 불연속이라고 조건이 주어졌는데, a는 1이 아니에요. 그런데 조교분이 답변에서 함수 g(x)가 저 경우에서 x=1에서만 불연속이라네요.. 애초에 함수 g(x)는 x=1에서 불연속일 수가 없는 것 같은데..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이은재는 신이야 0
펜홀더는 명작이다
-
힘들어죽겠다
-
좋은 아침! 0
매일매일의 족적이 곧 당신의 자산이 됩니다! 이는 수능 뿐 아니라 우리의 삶에서도...
-
그거 상쇄한다고 할당치만큼 공부했더니 그거대로 또 빡세다....
-
잠이안온다 0
조졌다
-
얼버기 2
하위
-
생존신고
-
https://youtu.be/Uaz4IVYB1bY 영상보고 후기좀.
-
그건바로사회성0의개찐따가된다는거야.... 나도알고싶지가않았어
-
9급공무원? 아 근데 재미가 없어보이는데
-
잘자라구해줘 10
쓰담도
-
수능 황제 분들께 여쭙겠습니다. 수능 기준 시간 없이 풀면 다 맞고 실전에서는 1컷...
-
5덮 사문 0
28m 42점 개시발
-
인스타나 유튜브 유나 직캠 댓글 보면 뭔 죄다 골반 수술 얘기네 분명 몇 달전까지는...
-
을종배당 2
뉴원스톱암보험
-
내일 1교시인데.. 이런 그러니까 교수님 왜 3일전에 발표하라고 통보를
-
여러분 6
자라
-
바꿨는데 존나맛있다 ㄹㅇ
-
ㅈ됐네
-
잔ㅋ 1
다ㅋ
-
저 급식 아님 0
-
간호가고싶음 0
불취업이라는데도 가고싶음 가는게맞나
-
님들은 어떻게 이런 공부안함..?을 극복하셨나요 ㅠㅠ
-
저 급식임 3
-
하루종일 물고일음
-
친구가 내신으로 잠깐 썼던거 준다는데 작년것도 괜찮나요?
-
어디까지올라가는거에요?
-
추석이었나 무슨 영상같은거 녹방 틀어놨길래 관리자 없는줄 알고 그 1557이모티콘?...
-
몸이 너무 아파 7
흐
-
쌍윤 각이네 1
교재 구매 고고링 종익쌤 다시 봬요
-
몇개 보다보면 옛날꺼까지 계속 들어감 ㅈㄴ 많이 봄 그러다가
-
오노추 0
-
원래 애니는 5
미소년남주에 자아의탁하려고 보는거 아닌가
-
대학입시만 알지 그 이후 진로에 대해서는 잘 모르겠네 자연대 교수하기 빡센가요?
-
최적? 아는 게 하나도 없음
-
내일할거 8
앱스키마 독서문학 기출정식 찔끔 미적볼텍스끝내기 두날개 볼록렌즈까지 끝내기
-
화작 확통 생윤 윤사 91 61 76 47 35 수학 나만 어려웠나.. 다들...
-
돈벌고싶어 0
아
-
어떤 강의가 가장 맛도리인가요?
-
사실 스토리는 걍 그저 그렇긴 한데 남주 미소년이라 자아의탁하기 좋음
-
사문 <--개념량 개많아 보이는데 지금 런 할만 한가요? 22
일단 배경지식 0인데, 지금 런 해도 될까요?
-
23화2는 머임 5
투필순데 만점자 4명 머임
-
상식적이고 이유있는 호의에 고마움을 못느끼고 이유없는 호의에만 큰 고마움을 느끼는
-
분명히 풀었던건데 30분 생각해도 못풀겠음 기출로 돌아가야하나
-
누백9~13은 몇등급대인강요?
-
베터리가 3%인데.
-
우울하다 우울해 18
또 우울시계가 째깍째깍 ~ 우울하다 우울해 라면 왜 먹었지? 살 찌겠네
-
광공업 비율 보고있는데 경북보다 많네 1 경기 2 서울 3 경북
-
찬우쌤 3
감사합니다. 선생님 덕분에 작수 문학에서 손도 못 댔던 제가 이번 5덮 문학 다...
-
스탭1은 술술풀려서 풀고있긴한데 진도를 지금 수1은 삼각함수고 수2는 적분인데 완전느린건가?
g(x)가 다항함수라고 안했어요
네 그건 저도 아는데, 함수g(x)가 x=a에서 불연속인데 a는 1이 아니에요
h(x)가 허근을 가질때여도 문제 조건때문에 g(x)가 x=1 에서 연속인것 같아서 질문드린거에요
fxgx를 hx라고 하신거에요? 대충봐서 모르겠는데 문제에 hx가 없는데..
죄송합니다 답지에 있는 표현이여서 사진 첨부했어요 f(x)=(x-1)h(x) 에요
조교는 x=1에서 불연속이라고 말한적이없는거같은데요
h(x)가 허근을 가지더라도 g(x)는 x=1에서 연속인 것 같은데 조교 분이 마지막줄에서 x=1에서 불연속이라고 하시네요..
h(x)가 g(x)이려면 a=1이어야하는데 a=1이 아니니까 h(x)는 g(x)가 아니다 라는 거 같은데 우진t강의를 안들어서 h(x)가 뭔 질 모르겠네여
제가 사진을 빠뜨려서.. ㅈㅅ 다시 첨부했어요 f(x)=(x-1)h(x)입니다
g(x)가 불연속이 되는 곳 = 분모인 f(x)가 0일 때 입니다
그리고 f(x)가 1을 근으로 가져야 하니까 h(x)를 새로 설정을 한거죠
그럼 이제 g(x)가 불연속인 곳 = 분모인 h(x)가 0일 때 혹은 x=1일 때 입니다 근데 a=/=1이라고 했으니 h(x)가 0일때만 g(x)가 불연속이에요
h(x)가 허근을 갖는다고 하면 h(x)가 0일 수가 없죠 그래서 허근일 때를 안보는 거에요
혹시 이해되셨나요..?
”그럼 이제 g(x)가 불연속인 곳 = 분모인 h(x)가 0일 때 혹은 x=1일 때 입니다“
g(x)를 (x-1)/h(x)로 쓸 수 있었던 이유는 문제에서 주어진 항등식 때문이에요. 그런데 주어진 항등식은 x=a에서 성립하지 않죠. 의도된 정답 상황에서 g(x)를 실수 전체에서 정의되게 만들기 위해서 그렇게 준 거지만, 이로 인해 x=a에서는 (x-1)/h(x)의 값을 신경쓰지 않고 우리 마음대로 g(x)의 값을 정할 수 있어요. x=a를 제외한 점에서는 저 논리가 성립하지만, x=a에서 g(x)의 값을 예를 들어 10000으로 설정해서 불연속점으로 만드는 것을 막는 건 없어요.
a=1이 아니면 학생분께서 말씀하신 상황에서 문제 조건의 "실수 전체의 집합에서 정의된 함수 g(x)"라는 조건을 만족할 수 없습니다
예를 들어 a=/1이라고 하고, 허근이 존재해 f(x)=0의 유일한 실근이 x=1이라하면,
g(x)는 x=a가 아니므로 x=1지점에서 (x-1)^2/f(x)를 따라가야하는데 이 방식으로는 g(1)이 정의될 수 없고 그래서 위 조건에 모순입니다
그래서 모순이므로 허근이 존재한다는 가정 자체도 틀리게 됩니다
문제에서 a가 1이 아니라고 되어있는데요
g(x)는 항등식 g(x)=(x-1)^2/f(x)가 아니라, 문제에서 준 항등식 f(x)g(x)=(x-1)^2를 따라갑니다.
이 항등식으로는 g(1)의 값이 아무 문제 없이 정의되죠.
x=1일때 0xg(1)=0 이여서 그런거 맞나요
네
저런 식으로 원래 항등식을 직접 고려해야 될 때도 있어요
님 말이 맞아요 문제를 잘못봤네요 근데 그럼 문제가 뭔가 이상하지 않나요 제가 이상한건가요
네
문제오류 맞는 것 같아요
그러네요 저 항등식이 x=/=a에서만 성립하니까 허근이어도 x=a 불연속점으로 만들수 있을것같은데..
f(x)=(x-1)h(x) /// h(x)가 허근이면
f(x)=0이되는 근이 x=1밖에 없는데
그렇게되면 g(x) 불연속이 되는 후보가
x=1밖에 없게되는데 그렇게 되면
문제에주어진 조건a=/=1을 만족을 못시키니까
조교분이 허근은 안된다고 말씀하시는거같아요
님 말이 맞아요
예를 들어 f(x)=(x-1)(x^2-3x+4), g(x)=(x-1)/(x^2-3x+4) (x=/=3) or =0 (x=3), a=3이 되면 문제의 조건을 모두 만족하지만 답은 다르게 나오죠
기초적인 문제오류네요
“x=1에서만 불연속이므로”는 아마도 “x=1에서만 분모가 0이 되고 따라서 x=1에서만 불연속일 가능성이 있으므로”라는 의미일 듯 하네요
당연히 실제로 x=1에서 불연속은 아니고, 또한 f(x)=0인 점에서만 g(x)가 불연속일 수 있는 것도 아니죠
네 그부분은 저도 그렇게 생각해요 근데 문제에 오류가 있는거 같네요
문제도 오류가 있고, 저 조교분 말도 오류가 있어요
일단 님이 질문글에서 쓰신 논리에 문제는 없는 것 같아요
이해됬습니다 정말 감사합니다
계속 질문해서 죄송한데, 만약 g(1)=0이라면 lim x->1 g(x) =0 이므로, g(x)가 x=1에서 연속이되고 이 상태에서 h(x)가 x=a에서 접한다면 함수 g(x)가 x=a의 좌우에서 발산하여 g(a)의 값과 관련없이 x=a에서 불연속이 되어 문제 조건을 충족시키고, h(x)가 허근을 가지더라도 g(a)의 값이 g(x)의 x=a 에서의 좌우 극한과 다른 값이면 문제 조건을 충족시켜 접하는 경우에서의 답과 다른 답이 나온다. 정확히 이해한 것 맞나요?
맞아요맞아요
오류 맞다네요 답변왔어요