엡실론 모의고사 3회 수능직전대비! 10월 10일(토)에 실시합니다.
게시글 주소: https://orbi.kr/0006604721
안녕하세요. 성대수교 엡실론입니다.
이번에 수능 직전대비로 마지막 3회 모의고사 A, B형을 10월 10일(토)에 실시합니다.
아직 시간은 미정이므로 수요일~목요일에 확정되면 알려드리겠습니다.
3회 A형 B형 모두 수능보다 약간 어렵게 제작하여 실전 수능에서 실력발휘를 다 할 수 있게끔 하였습니다.
또 모의평가에서 세트형이 나왔다 안나왔다 하는 추세를 반영하여
B형에서 1, 2회에 세트형을 냈다면 이번 3회에서는 세트형을 출제하지 않았습니다.
올해 마지막 모의고사입니다. 끝까지 열심히 준비했습니다.
많이 참여바랍니다~!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
느낌이 좋다 2
몬스터 두 캔 빨았더니 잠도 거의 안 오다시피 하고 필기본 노트에 옮겨쓰는 중인데...
-
그렇다고 옛날이 물로켓이다 이건 아니고 그때는 그때대로 어려웠는데 절대적인 난이도를...
-
자취 여부랑 함께 말해주면 더 ㄱㅅ 보통 70 쓰나?
-
칼럼 목표는 0
뭘 찾으려고 하는 검색어일까
-
시발 4
아
-
제가 작년에 사놓은 책이 2025 뉴런,수분감,시냅스가 있는데 그냥 풀까요 아니면...
-
ㅍㅈ가 뭐게 127
피자 피지 피즈 퍼즐 또 뭐있죠
-
위 문제는 각각 2509 30번, 2506 12번입니당. 위에껀 ㄹㅇ 계산만 12분...
-
외국 살다가 군복무 마치고 오랜만에 공부하는데 예전엔 다 했었는데 지금은 기억 나는...
-
너무 아름다우심.. 저런분들은 왜 내 근처엔 없는거지
-
20수능 가형 30번풀이 이 풀이를 보고 같은 종이라고는 생각할 수 없는 격의 차이를 느꼈음
-
샤인미는 거의 재탕으로 알고 있구 이해원이랑 설맞이 이로운 등 25 대비 26에서 바뀐 거 많나요
-
어버이날과 겹쳐서 겸사겸사 사려는데 고민 중 원래 사려던 비녀+장신구+책갈피 세트는...
-
26시간 하려면 내일 아침 8시까지는 해야 될거같은데 ㅋㅋ
-
D-2 ㅇㅈ 1
수학 더이상 할게없음 이제 으으
-
ㄹㅇ
-
2옥라에서멈춤 시에서가성처리함
-
결혼이나 여러 가지 '으른들의 이야기'를 듣고 있다 보면 내 얘기가 아닌데도 일단...
-
나머지 과목은 동사로 정했구 백분위는 정법이 더 좋은거같긴한데 공부량이나 여러가지...
-
누워서 문제만들고싶다
-
이해원N제 책이 1
이해원 모고 문제를 재탕하는 문제집인가요?
-
내 청력이 이럴리 없는데
-
힘들군
-
2시간정도만눈붙일까 10
흠
-
우항항 12
ㄹ.ㄹ
-
절 실물로 보실 기회가.. ㅎㅎ
-
레어 버그인가 4
두번 눌렀더니 두개 생겼네
-
지금 만나는 사람이랑 똑같음 생각해보니까 그러네 그에비해 난 아직 철이 덜 든거같음
-
171130은 0
기울기함수 발상만 딸깍하고 넘어가기에는 배울게 넘 많은 문제인데 고작 수2문제 따위...
-
오늘의 야식은 2
불닭과 핫바..
-
ㅇㅇ
-
14시간의 전사라는 매우 고통스러운 길을 선택하게됨
-
잘래요 10
내일은 기숙사 퇴사하러 학교로 드라이브~ 오르비언 여러분 모두 굿밤
-
B0도 사실 굉장히 성의있게 공부한거라는걸 깨달아버림
-
반갑습니다 5
여러분
-
안잔다 10
남은 8시간 안에 나는 가족법의 신이 된다 와라 중간고사여
-
중간 좃같네 6
그냥 재종 편입 박을까
-
설레발은 필패 2
잘본게 없는것같네 슈밤바
-
메디컬 과씨씨 14
어케생각함 셤기간이라 그런가 오만생각 다하고 있네 6년 같이 살아야하는데 가능?
-
아몰라 F받을래~~
-
죽겠다 7
하이고..
-
고1인데 중3때 아예 공부를 놨어서 중3수학을 거의 모릅니다. 이번에 시간날때...
-
기출->이해원->지인선 이 순서로 해야겟음
-
뉴런은 남겨놓을걸
-
전공시험 13시간 전 11
시험범위는 1장~6장 1장 스무스하게 끝 2장 벽 체감직전 상황
1회 2회 정말 잘풀었습니다!! 3회도 기대할게요!
네 감사합니다. 열심히 3회 검토중입니다
정해진 날짜에만 풀어볼수있나요?
ㄴㄴ아님
아닙니다. 다만 그 시간대에 시험을 보시면 실시간 자신의 위치(오르비집단점수분포는 확실히 수능등급컷보단 높습니다. 그러니 상위권중에서의 자신의 위치를 말하는겁니다.)를 확인하실수 있다는 점이 좋습니다. 문제는 언제든지 성균관대학교 수학교육과 홈페이지에서 다운받아서 풀어보실수 있습니다.
내년부터 엡실론 모의고사 하나 출판하시는게 ㅠㅠ 출판되면 살 의향 있는데
내년에도 하실려고요?
아 맞닼ㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ
마음 정말 감사합니다.ㅎㅎㅎ 올해 출판 계획은 없습니다ㅠ
2회 풀었는데 좋앗네요 행렬도 깔끔햇고 킬러문제도 쉬운 21번과 어려운 2930?
확률쪽에서 약점도 잡고 갑니다 잘풀엇어요
감사합니다. 3회도 열심히 만들고 있으니 풀고 좋은 성적 거두시길 바라요.
엡실론 퀄 굉장히 좋던데 꼭 풀어보겠습니다!
감사합니다~!
올해 봉투 형식으론 안나오나요?
네. 올해 출판계획은 없습니다ㅠ
질문이 있는데 a형 1회 12번 답이 3번인가요? 4번인가요?
정답은 4번인데 그 이유는 an=2n-1이 나오는데 두번째항 이상부터 성립합니다. 따라서 초항은 Sn에 n=1을 집어넣은 3이 됩니다.
그리고 추가로 Sn이 2차식으로 나오면 일반항은 무조건 등차수열인데
2차식 Sn에서 상수항이 0이면 등차수열 an은 첫째항부터 성립하고, 2차식 Sn에서 상수항이 0이 아니면 상수항값이 an의 초항에 더해져서 등차수열 an은 두번째항부터 성립합니다.ㅎㅎ
S(n) - S(n-1) = a(n) 임은 n이 2이상에서만 성립함을 알아두세요! 수열에서는 일반적으로 n이 1이상에 대해 생각하기때문에 S(n-1)을 계산할 때 n=1인경우 0번째항까지의 합이 되어버리기때문에 정의가 되지 않습니다.
그래서 S(n) - S(n-1) = a(n)는 n이 2상에대해서만 성립하고, a(1)을 알고싶으면 S(n)에 n=1을 대입하면됩니다. 첫번째항까지의 합은 첫번째항과 같으니까요.
엡실론님께서 답변달아주신부분에서 밑에 추가로~~ 나와있는 부분은 지금 시기에서는 굳이 새롭게 아셔야 할 필요는 없고, S(n)이 주어졌을 때 a(n)을 제대로 구하는 방법만 확실히 숙지하시면 될 것입니다. 저 추가설명에 대해 혹시 이해가 잘 안되는데 알고싶으시다면 주변 수학잘하는 친구들이나 선생님께 여쭤보는 것도 답일 듯 싶습니다.
2회 정말 어려웠어요 ㅠㅠㅠㅠㅠㅠㅠ... 3회는 꼭 실시간으로 참여하도록 노력할게요!