정보) 컴퓨터공학과 과목 맛보기 - 2. 시스템프로그래밍(1)
게시글 주소: https://orbi.kr/00066046560
어제 쓴 글이 별 반응은 없었으나.. 일단 적기 시작했으니까 계속 가보려고 합니다.
오늘은 '시스템프로그램'이라는 과목입니다.
(다른 학교에서는 어떻게 부르는지 잘 모르겠네요.)
필자가 이 과목을 수강했던 학기는 2020년(2학년) 1학기, 평점은 A+였습니다.
자료구조는 솔직히 전공이라고 봐주기에는 애교 수준이고
이 과목을 듣기 시작해야 '아 내가 컴퓨터공학과에 왔구나'하는 느낌이 좀 듭니다.
'시스템프로그램 - 컴퓨터구조 - 운영체제'로 이어지는 시스템 과목 중 가장 앞 과목입니다.
이 과목에서는 뒤의 두 과목을 듣기 위한 기본 지식을 배운다고 보시면 됩니다.
시스템이 도대체 뭐냐?고 물으신다면 마지막에 있는 '운영체제'를 떠올리시면 됩니다.
윈도우, 안드로이드, iOS 같은 운영체제 또한 소프트웨어이고,
흔히 우리가 앱이라고 부르는 어플리케이션 소프트웨어는 시스템 소프트웨어 위에서 동작하기 때문에
시스템에 대해 아는 것이 굉장히 중요하다고 볼 수 있습니다.
우리가 많이 쓰는 프로그램들도 시스템 단에서 최적화되어있는 부분이 많습니다.
시스템에 대해 잘 알아야 다른 소프트웨어도 잘 만들 수 있다는 것이죠.
-------------------------------------------
컴퓨터하면 뭐가 떠오르시나요? 아무래도 2진법 아닐까요?
컴퓨터는 모든 정보를 0과 1로만 저장합니다.
이 과목에서는 이런 비트에 관한 내용을 먼저 배웁니다.
비트에 관해서는 signed와 unsigned의 차이, 2의 보수,
& / | / ~ / ^ / << / >>와 같은 비트 관련 연산자, overflow 등 매우 많은 것을 배우지만,
여기서는 숫자를 어떻게 저장하는 지에 대해서 살펴보죠.
근데 우리가 주로 쓰는 체계는 10진법입니다.
근데 컴퓨터는 이러한 10진법 숫자를 어떻게 저장하고 계산할 수 있을까요?
또한 정수가 아닌 소수들은 어떻게 저장할까요?
정수는 다들 어떻게 바꾸는 지는 대충은 아시니까.. (2로 계속 나눠서..)
소수를 2진법으로 바꾸는 방법을 보면, 이것도 정수를 바꾸는 것과 크게 다르지 않습니다.
소수점에서 멀어질 수록 1/2배가 되도록 바꾸면 됩니다. (정수와 반대로 2를 계속 곱합니다.)
예를 들어 7/8은 1/2+1/4+1/8과 같으므로 2진법으로 쓰면 0.111이 되는거죠.
그럼 이렇게 2진법으로 바꾼 숫자를 어떻게 저장할까요?
C언어를 배우다 보면 float라는 자료형을 배우게 됩니다.
이건 소수점을 저장하기 위해 사용하는데요.. 근데 왜 이름이 float일까요?
그것은 바로 컴퓨터가 소수점을 저장하는 방식과 관련 있습니다.
바로 부동소수점(floating point)라는 방식을 사용하거든요.
영문을 보시면 아시겠지만 뜰 부(浮), 움직일 동(動)입니다.
떠다니면서 움직인다는 건데요, 과연 무엇이 떠다닌다는 뜻일까요?
바로 소수점이 움직인다는 것입니다. 소수점이 움직인다는 게 무슨 뜻인지 감이 안 오시죠?
부동소수점의 반대 개념인 고정소수점을 먼저 설명해야 이해가 쉬울 듯 합니다.
고정소수점(fixed point) 방식은 말 그대로 아까 바꾼 숫자를 그대로 저장하는 방식입니다.
6.875라는 소수를 저장한다고 예를 들어보죠.
6.875를 2진수로 바꾸면 110.111이 될 것입니다.
이렇게 바꾼 정수부와 소수부를 결과 그대로 110, 111로 저장하는 게 고정소수점 방식입니다.
이러한 방식은 제한적인 메모리 공간을 효율적으로 사용할 수가 없습니다.
만약에 정수부 소수부가 각각 4비트씩 있으면,
정수부는 0000(=0) ~ 1111(=15), 소수부는 0000(=0) ~ 1111(=15/16) 범위 내에서만 사용 가능하거든요.
그래서 이러한 문제를 해결하기 위해 부동소수점이라는 방식을 도입하게 됩니다.
이 방식은 숫자를 저장하기 전에 한 가지 연산을 더 해야해요.
아까 6.875를 다시 끌고 오죠.
얘는 2진수로 110.111인데 이는 11.0111에 2를 곱한 것과 같고,
1.10111에 4를 곱한 것과 같습니다. (10진수 10.1이 1.01의 10배인 것과 같습니다.)
6.875 = 110.111(2) = 1.10111(2) * 2^2 라는거죠. ((2)는 2진수라는 뜻)
이렇게 110과 111 사이에 찍혀있던 소수점을
1과 10111 사이로 옮겨버렸습니다. 이래서 우리는 이 방식을 부동소수점이라고 부릅니다.
이렇게 변형한 숫자를 어떻게 저장하냐면
1.10111이라는 앞에 곱해진 가수(fraction/mantissa)와
2에 붙어있는 지수(exponent)인 2를 저장합니다.
이런 지수를 이용하는 방식으로 저장하기 때문에
매우 큰 범위의 수를 적은 수의 비트로도 저장할 수 있는 거죠.
(로그라고 하기는 뭐한데 비슷하게 생각하시면 됩니다. 스케일을 줄이는 거죠.)
컴퓨터에 관심이 있으신 분들 중에 IEEE라는 곳을 들어보신 적이 있으실 겁니다.
IEEE는 Institute of Electrical and Electronics Engineers라는 조직으로
전자전기공학에 대한 표준을 제정하는 곳입니다.
우리가 많이 쓰는 Wi-Fi 있죠? 그것도 여기서 제정한 표준 규격입니다. IEEE 802.11이라고 부르죠.
부동소수점도 대부분의 컴퓨터가 이곳에서 제정한 방식(IEEE 754)으로 저장합니다.
단, 이 방식에는 단점도 분명 존재합니다.
가장 큰 문제는 아무래도 저장하고 싶은 숫자를 정확하게 저장할 수 없을 때도 있다는 겁니다.
가수부의 비트가 무한정하지는 않기 때문이죠.
또한, 고정소수점 방식에 비해 덧셈/뺄셈이 느릴 수 밖에 없습니다.
-------------------------------------------
반 학기 동안 이것 외에도 비트에 대한 많은 내용을 배우고 씨름하게 됩니다.
글이 너무 길어져서 여기서 끊고 계속 작성해보겠습니다.
제가 적은 글 (클릭하면 연결)
(현재 글) 3. 컴퓨터공학과 과목 맛보기 - 2. 시스템프로그래밍(1)
4. 컴퓨터공학과 과목 맛보기 - 2. 시스템프로그래밍(2)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기본 개념인가요?? 아님 스킬인가요?? 트레드밀 안 듣고 러쉬 할만해요???
-
작년 6월 불영어 끝나고 평가원장 인터뷰임 ㅋㅋㅋ 나는 스킬이나 요령 안통하게 낼꺼라고
-
올1컷맞고 서성한도 못쓰는 해도 많았고 뭐 당연히 쉬우니까지만 어떤 시험지도 96...
-
실모 보관 1
보통 어디에 보관하시나요?
-
여러 가지 교훈이 담겨있음
-
어떻게보면 당연함 ㅇㅇ 근데 예전 나형 1컷 이하는 발언권이 있나? 애초에...
-
재수 수학 1
이번 수능 미적분 88점 나왔는데 시발점부터 다시 들을까요 아니면 뉴런부터 들을까요?
-
얼버기 3
-
안녕하세요 0
좋은 아침입니다
-
ㅈㄱㄴ
-
이 문제 나는 다 풀고 5번이라 생각하고 집에갔는데 답 나오기 전까지 오르비에서...
-
수학통합후 보다 훨씬 정시도 쉽지않나? 아닌가
-
아무쪼록 행운을 빌어주시길 :) 공군 병 848기 드림.
-
갤탭 2
엄마가 다음달에 사주신다고 함 이번엔 보급형 싼걸로 사려고 아이패드 에어 4 고3때...
-
시작이구나 1
씨이발가보자..
-
진짜 ㅋㅋㅋㅋㅋ
-
설대25학번분들 0
저만 모바일 학생증 안 만들어짐?
-
어떡함?
-
얼부기 2
-
ㅅㅂ 뭐가 맞는건지 모르겠음 내가 너무 나약한거 같다
-
쪽지줘 자칭 차은우임 ㄹㅇ
-
같은 조 재학생 선배님이 사진 원본화질로 보내달라고 하는데 아무도 원본으로 안 보냄 ㅡㅡ
-
아직안잤는데 1
거실에서 엄마랑 동생이랑 일어나서 얘기중인듯 으아아
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
이거 이렇게 하는 거 맞음?? 아님 잘못된 부분이나 보충해야할 거 있나?
-
꿈에서. 두 대학 추가모집에 모두 합격하고 어딜 갈지 고민하고있었네요 왜냐면 나는...
-
오르비 안 들어오고야 만다
-
군수생 달린다 4
고고고곡
-
이젠 뭐.. 느낌두 업다..
-
얼버기 1
밥 먹어야지
-
광주 부산 0
광주 사는데 부산쪽으로 대학교 가는 거 어떻게 생각함?? 광주에 놀게 너무 없고...
-
언제 이렇게 살아보냐 죽기전에 한번쯤은 청춘을 불태워봐야제
-
오노추 2
으흐흐흐
-
글삭끝 2
이제공부하러감
-
잇올가기.. 인생이 너무 비참하네 성불할테야
-
얼버기 6
모닝
-
D-258 2
다음주부터 독재 가니깐 스카 가는 마지막날.
-
오늘 할일 6
10모 기하 풀기 이게 전국 만점 한명이라매요? ㅋㅋ
-
지라이야랑 이타치랑 싸우면 누구 이기는거임 대체
-
아침이라 머리 아프다고 넘기겠지? 오후까지 존버 타야겠다
-
탄핵되고 ㅁㅈ당에서 대통령나오면 의대 감원되나요?
-
하루 동안 물리학2 1단원 정도만 풀었습니다
-
덕코복권에 다 꼴아박음..... 아 이제 편의점에서 덕코로 점심 못 사먹겠네
-
국어 수학 못할수록 사탐런의 효용이 크죠?
-
아침은 0
롤체 5인큐
-
문학급으로 연계체감 되나요?
-
선택과목 고민 1
언매 기하 지1 물2 설의 가는데 선태과목 불이익은 없겠죠? 선택과목 심리싸움만...
-
일단 전 물1지1이었고 이제 군필 5수가 되어가는 사람입니다. 지1은 계속...
꾸준하시네요..

선 좋아요 후 감상아.. 섰다
끼요옷
1.2 == 1.2
이 과목을 들으면 왜 이렇게 되는지 알 수 있습니다.
제발 갈등 메타 이딴 글 메인으로 올리지 말고
이런 칼럼 좀 메인으로 올립시다!!

전 1명이라도 봐주는 분이 있기만 하면 만족합니다..