10모 후기
게시글 주소: https://orbi.kr/00064807577
#4 사잇값 정리에 의해 f(p)=f(q)=0 (1<p<3<q<5) 를 만족하는 실수 p, q가 존재한다. 이때 방정식 f(x)=0의 실근은 0, m, n이며 m, n이 자연수이기 때문에 (m, n)=(2, 4) or (4, 2) 결정 가능하다.
#7 첫 번째 조건에서 6번째 항이 0임을 확인할 수 있다. 두 번째 조건에 이를 적용하면 3번째 항이 6임을 확인할 수 있다. 공차가 -2이므로 2번째 항은 8이 될 것이다. (이 과정을 머릿속으로 마무리하면 재미있지만, 수능 점수는 재미있으면 안되기 때문에 손으로 계산 실수 안 나게 일일이 과정 잘 적어두시길)
#8 부등식이 나오면 한 쪽으로 모두 넘기는 것이 편할 때가 있다.
#9 거듭제곱근 중 실수인 것의 개수를 따질 때에는 n제곱근의 n이 홀수인지 짝수인지, 거듭제곱근을 관찰하고자 하는 수가 양수인지 음수인지를 확인해야한다.
#10 t에 관해 각 점의 좌표를 작성해내면 점과 점 사이의 거리 공식을 적용해 선분 AB의 길이를 구할 수 있다. 혹은 주어진 직선의 기울기가 t이므로 점 A, B의 x좌표 차이를 구한다음 삼각비 or 피타고라스의 정리를 이용해 sqrt{t^2+1}을 곱해주어도 괜찮다.
#11 삼각함수는 주기함수입니다. 주어진 함수의 주기는 2b이고 넓이 조건에서 선분 AB 길이 결정 가능, 길이 조건에서 b값 결정 가능, 이후 점 A의 x좌표 정도 구해 y=5 대입하여서 a값 결정 가능했습니다.
#13 '결정'하는 문제 상황들은 모두 조건 하나씩 고려하여 필요충분조건 확인해주고, 하나씩 올려가며 교집합의 원소를 찾아가시면 됩니다. 이 문항의 경우 저는 기울기 -2 정보를 활용하기 위해 점 P에서 선분 QR에 수선의 발 H를 내려주고 선분 QH의 길이를 k라 둔 후 삼각형 PQH에서 피타고라스의 정리 돌려야겠다는 생각이 처음에 들었습니다.
#14 f(x)=(x-2)^2+p로 두고 n=1, 2, 3, 4, ... 대입해보면 p가 -19/3 이상이고 -7/3 이하임을 확인 가능. p 범위 구했으면 나머지는 시시하게 풀립니다, 14번 위치 치고 아쉬운 문항
#15 (나) 조건에 3, 5번째 항에 관한 정보가 제시되었으므로 (가)에 주어진 관계식에 n=2, 3, 4 정도를 대입해봅시다. 그리고 n번째 항이 4의 배수냐 아니냐에 따라 (n+1)번째 항이 어떻게 결정될 것인지가 달라지니 경우 분류가 들어와야 했습니다.
(사실 귀찮아서 아직 답 안 내봤는데.. 조만간 해보겠습니다)
#20 차분하게 식 전개 후 상수 밖으로 빼고 미분 열심히 하시다 보면... 전통적인 f(x)=ax^n+... 설정으로 n값 결정 가능했습니다.
이제 f(x)=px+q 놓고 정리하시면 되겠죠~
식 정리하면 q=0 나오고 f'(x)=4 조건에서 p값 결정 가능하기 때문에 f(x)도 결정 가능했습니다.
#21
원에 내접하는 다각형은, 주어진 다각형의 모든 꼭짓점이 원 위에 위치하는 것으로 이해할 수 있습니다.
선분 DE도 원의 지름이고, 각 CAE의 크기와 각 COE의 크기는 원주각과 중심각의 관계에 있습니다.
원의 중심 O에서 선분 CE에 수직이등분선 내려주면 삼각비에서 선분 CE의 길이는 1, 따라서 선분 BF의 길이도 1
삼각형 ODF에서 cos법칙 통해 선분 DF의 길이 결정 가능, cos법칙 통해 각 OFD에 관한 정보 파악 가능
삼각형 ABF에서 선분 BF 길이 알고, 각 CED와 각 CAD가 원주각의 관계이므로 크기가 일치하고, 지름에 대한 원주각인 각 BAC가 직각이므로 각 BAF의 크기에 관한 삼각함숫값 알고 있고
각 OFD의 크기 알고 있으므로 각 AFB의 크기로 돌리면 삼각함수의 덧셈정리로 각 ABF의 크기 파악 가능
삼각형 ABF에서 sin법칙으로 마무리, 선분 AF의 길이 구할 수 있음
*삼각함수의 덧셈정리는 수학1 과정은 아니지만 쓸 수 있을 때 써서 나쁠 것은 없다고 생각합니다! 특히 ebs 연계교재, 교육청, 사관학교, 경찰대 문항들과 사설 n제/실모 등 평가원 문항이 아닌 것들을 다룰 때 도움이 될 수 있다고 느꼈습니다. (=평가원 시험 응시할 때는 웬만하면 쓸 필요 없다)
#22 g는 미분 가능한 함수이므로 f(x)=p(x-4)^2(x-q)
(가)에서 q=21/2
(나)에서 p<0이면 모순. p>0이고 점 (-2, 0)에서 곡선 y=g(x)에 그은 접점 (c, g(c)) (0<c<4) 에 대한 접선이 마찬가지로 f(x)에 접해야함. 공통접선 상황
접점 (c, g(c))에 대한 접선의 방정식 작성해 c값 결정 및 직선 L(x) 식 세우고 접점 (u, g(u)) (u>4) 설정하여 L(u)=g(u), L'(u)=g'(u) 연립하면 u, p값 결정 가능
#확통27 두 자연수에 대해 공통된 약수가 1로 유일할 때, 두 수를 서로소라고 한다. 1, 2, 3, 2^2, 5, 2*3, 7, 2^3에 대해 1, 5, 7은 소수이기 때문에 옆에 아무나 와도 된다. 따라서 먼저 원순열 2!을 돌려줬다.
이제 1과 5 사이, 5와 7 사이, 7과 1 사이 이렇게 세 구역을 잡고 남은 2, 3, 2^2, 2*3, 2^3을 배치해야하는데... 나머지는 소수 혹은 소수의 거듭제곱꼴이지만 6만 서로 다른 소수의 곱으로 이루어진 수임을 확인 가능
따라서 6을 먼저 배치하면, 그 구역에는 나머지 숫자들이 들어갈 수 없다. 어디에 배치하느냐에 관한 경우의 수 3C1
만약 어떤 구역에 3이 없다면 2, 2^2, 2^3 중 한 가지만 배치될 수 없다. 따라서 구역 선택하고 세 수 중 하나 고르는 경우의 수 2C1*3C1
이제 3과 2, 2^2, 2^3 중 두 수가 남았다. 예를 들어 2, 3, 4가 남았다고 해보자. 2와 4는 이웃할 수 없으므로 234 혹은 432가 되어야 한다. 따라서 경우의 수 2
--> 2! x 3C1 x 2C1 x 3C1 x 2 = 72
ㄴ 솔직히 저 경우의 수 진짜 못 세는데 이건 풀이 좀 잘 쓴 것 같아요 뿌듯~~
#미적26 g에 5f 합성해둔 것 귀엽죠, 미분하면 g'(5f(x))*f'(x) 나옵니다
#미적28 f만 봤을 때는 복잡하게 생겼다는 점에서 2024학년도 6월 미적분 28번에 제시되었던 항등식 우변도 떠오릅니다. (나) 좌변 봤을 때 어쨌든 f를 적분해야하기 때문에 어떻게 하면 좋을지 생각하다가... x=pi/2-t 정도로 치환하여 f가 그대로 유지되는 것을 보고 함수 f(x)가 a, b값에 무관히 x=pi/4에 대칭임을 발견할 수 있었습니다.
하지만 (가)에서 a=0 or b=0이기 때문에 시시해집니다. 각 경우에 대하여 sin(x) 혹은 cos(x)에 관한 적분을 걸어줄 수 있고
a=0일 때 b값 2개, b=0일 때 a값 2개 확보하여 총 4가지 경우에 대해 a-b값 살펴보면 되었습니다.
#미적29
점 A에서 선분 BC에 내린 수선의 발을 H라 할 때 삼각형 EBH와 ABC가 AA 닮음이므로 점 H는 선분 BC의 중점
선분 EC와 원이 만나는 점을 F라 할 때 각 DAF의 크기를 beta로 두어 삼각형 CED의 내각 모두 표기 가능
근데 뭔가 답이 없어보이고..
호 DH에 대한 원주각, 중심각 관계를 이용하고 삼각형 AED에서의 sin법칙으로 선분 AD 길이 구할 수 있음
삼각형 CDH와 삼각형 CBA의 닮음 관계를 이용, (할선 정리에 따라) 선분 CD의 길이 구할 수 있음
삼각형 CDE 넓이를 구해주면
극한 처리해주면
답은 30 됩니다.
이렇게 정리하고 보니까 각 CHD와 각 HAD의 크기가 일치하기 때문에 (접선과 현이 이루는 각) 삼각형 CHD에서 선분 CD의 길이 간단하게 구해
상황 정리할 수도 있었겠네요 ㅜㅜ
이처럼 문제 상황을 대할 때 미리 '이거 떠올릴 준비 해두어야지'라고 해두지 않으면 잘 떠오르지 않는 것들이 있다고 느꼈습니다.
특히 도형 문제를 풀 때
[] 피타고라스의 정리
[] 각의 이등분선 정리
[] 중선 정리
[] 접선과 현이 이루는 각
[] 이등변삼각형 보이면 수직이등분선
[] 원 위의 점과 원의 중심 연결
[] 원주각과 중심각
[] 할선 정리
[] 원이 삼각형에 내접하면 원의 반지름과 삼각형의 세 변의 길이의 합을 곱한 값의 절반이 곧 삼각형의 넓이
[] 삼각형에 외접하는 원이 나왔거나 각의 크기를 많이 알고 있으면 sin법칙
[] 두 변의 길이와 한 각의 크기를 알거나 (끼어있으면 확정, 끼어있지 않으면 이차방정식 나올 것입니다) 세 변의 길이를 알 때 cos법칙
[] 닮음
[] 좌표계 설정
[] 원의 중심에서 현에 수직이등분선
[] 원끼리 접하면 원의 중심끼리 연결
[] 삼각함수의 덧셈정리
[] 비율 제시되면 비례 상수 활용해 직접 길이 등 작성
[] 원, 다각형 간 접하거나 한 점에서 만날 때는 직선의 기울기, 각의 크기에 초점
[] 비슷한 조건이 여러 개 제시되었을 때는 하나씩 차분하게 고려
[] 어떤 점까지의 거리가 일정하게 유지되면 원
[] 어떤 점까지의 거리와 어떤 직선까지의 거리가 일치하면 포물선
[] 어떤 점까지의 거리와 다른 어떤 점까지의 거리의 합이 일정하면 타원
[] 어떤 점까지의 거리와 다른 어떤 점까지의 거리의 차가 일정하면 쌍곡선
정도는 머릿속에 각인해둔 상태에서 접근하시는 것이 현장에서 시간 단축 및 효과적인 풀이 발견에 도움이 될 것입니다!
미적#30
(가) 조건에서 미분 가능한 함수가 극값을 가지면 도함수의 부호 변동이 발생함을 이용해 위와 같은 부등식을 얻을 수 있습니다.
(나) 조건을 해석해봅시다, f가 극값을 지닌다면 ㅣfㅣ도 극값을 지닙니다. 따라서 이차방정식의 근과 계수의 관계에 의해 우선 2-a가 확정적으로 합에 포함됩니다.
f는 극값을 지니지 않지만 ㅣfㅣ가 극값을 지니는 곳을 떠올려보면 f(x)=0이지만 f'(x)=/=0인 x값들이 존재할 수 있습니다.
만약 이차함수 x^2+ax+b가 서로 다른 두 실근을 갖는다면 이차방정식의 근과 계수의 관계에 따라 (나) 조건을 만족하는 k값 합에 -a가 더해져 2-2a=3임에 따라 모순이 발생합니다.
만약 이차함수 x^2+ax+b가 중근을 갖는다면 이차방정싱의 판별식에 의해 a^2-4b=0입니다.
이때 방정식 x^2+ax+b=0의 실근이 x=-b/2a이므로 (2-a)-a/8=3에서 모순이 발생합니다.
따라서 이차함수 x^2+ax+b는 실근을 갖지 않고 a^2-4b<0임을 확인 가능합니다. 즉,
임을 확인 가능합니다.
이때 2-a=3에서 a=-1이고 위의 부등식을 b에 관해 정리하면
f를 결정 가능합니다.
#기하27 (가) 조건에서 사각형 ABCD가 사다리꼴임을 확인 가능
(나) 조건을 편하게 바라보기 위해 점 A가 원점이고 점 D가 양의 실수가 x좌표인 x축 위의 점이라 생각해보자.
A(0, 0), B(p, q), C(r, q), D(s, 0)에 대해 주어진 벡터방정식을 정리하면
t값을 결정할 수 있습니다.
이후 삼각형 넓이 조건 적용하면 답은 5번입니다.
#기하29 (가) 조건에서 점 P는 원 x^2+y^2=4 위를 움직이고 크기가 0이 아닌 두 벡터를 내적해서 값이 0이 나오려면 두 벡터가 수직이어야 합니다.
따라서 삼각형 OAP는 각 변의 길이가 2, 루트21, 5인 직각삼각형이 될 것임을 확인할 수 있습니다.
(나) 조건에서 점 Q는 원 (x-5)^2+y^2=1 위를 움직이고 아까와 같은 논리로 두 벡터가 수직이어야 합니다.
따라서 삼각형 OAQ는 각 변의 길이가 1, 루트24, 5인 직각삼각형이 될 것임을 확인할 수 있습니다.
원의 중심과 원 위의 점을 이은 직선이 주어진 원 위의 점을 지나는 직선과 수직이라면 후자는 접선입니다.
따라서 답을 내주면 다음과 같습니다.
#기하30 구의 중심 O에서 선분 AB에 수선의 발 H를 내리면 직각삼각형 AOH에서 피타고라스의 정리에 의해 선분 AB의 길이는 4
이후는 공간 지각 능력이 딸려서 천천히... 고민해보겠습니다 ㅋㅋ
<감상문>
재밌었습니다! 2024학년도 9월 시험지와 비교할 때 상대적으로 반윤이었다고 느꼈습니다. 하지만 2022학년도 예시 문항부터의 9회치의 평가원 시험지에 기반할 때 친윤이라고 생각합니다. 문제가 괜찮다, 문제가 별로다 이런저런 말이 많아서 한 번 풀어보고 싶었는데 다음 6가지 문항 말고는 그리 인상적이진 않았던 것 같습니다.
4번, 9번, 22번의 '기본에 충실함'과 확통27번, 미적28번, 미적30번의 '경우의 수 분류'에 초점을 두시고 수학 학습 잘 마무리해가셨으면 좋겠습니다! 물론 이 글 또한 제 주관적인 생각을 담고 있기 때문에 '이 사람은 이렇게 생각하는구나~' 정도로 확인하고 넘어가시면 감사드리겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어는 언매라햇을때 어디까지 갈수잇을까요 교차포함
-
해도 유불리 없겠죠?
-
예상 댓글 : 훈남 ㅇㄷ?
-
.
-
이원준T 22수능 수준의 비문학 3개 몇 분 안에 푸시려나
-
?
-
당시에 충남대 약대 합격후 에타 탐방중이엇음 한밭대랑 통합 이슈가 잇엇는데 이름을...
-
의대생들 4
학교 안가도 동아리는 열심히 하나요? 반수하신/하실분들은 학교생활 어떻게 하시나요??
-
익숙한 향기가..
-
[속보] 국민의힘 35%·민주 33%.. 이재명 28%·김문수 13% 26
[속보] 국민의힘 35%·민주 33%.. 이재명 28%·김문수 13%
-
컨설트 진짜..
-
오 중앙의 에타 4
통과 빠르노 ㅎ ㄷ ㄷ ㄷ 성대야 발표 빨리해라 나 아직 숨 참고있다 흡!
-
제발요 친구가아예업ㄱ는건 아님
-
아가 기상~ 0
다들 쪼아!(좋은아침)
-
의대 휴학 1
올해도 휴학할 가능성이 높다고 들었는데 휴학하면 기숙사 등등은 어떻게 하나요?...
-
근데 새터는 무조건가라 13
자기 성격이 엥간 인싸가아니라면 새터안가고 친한 과 동기들이나 선배 만들기...
-
내 진양철이다 8
오랜만에 보는데 너무 좋다..
-
영수 노베인데 학원 다니지 말고 현우진 노베나 이미지 기초 수학으로 커버 가능 할까요?
-
비염약 받으러 이비인후과 갔는데 개뜬금없이 몸살감기 이러길래 감기증상이 하나도...
-
과탐은 안하는게 잘하는 법이라고 해줌
-
여름방학부터 논술 학원 열씨미 다니면 되는 정돈가요?
-
영어 과외하는데 4
학생이 듣기를 자꾸 틀리네 ㅜㅜ ㄹㅇ 요새 애 상태를 파악하고 있는데 단어 상태가...
-
올해 만약에 화학 컷 내려가면 배 아플거 같음
-
정원 한자리수인 극소수과는 무조건 거르고 봤습니다... 어둠의 표본 한두 명만...
-
쌍수경례 0
헉
-
좀 알려주십쇼 조기발표하면 언제쯤 할것 같은지도 부탁드리겠습니다
-
굳이 얘기 안하고싶은데 아빠는 왜자꾸 꺼내는지 머르깃음 어차피 서로 절대 이해못하고...
-
그리고 3~4명은 솔직히 너무 적게 뽑잖아...
-
볼때마다 눈물이 찔끔 나올거같음
-
고른다면 뭐 고르시나요? 저는 설의여도 전자 고를듯..
-
어째 갈수록 퇴화하냐
-
본인 현대시 거의 싹다 감으로 풀고 문학 기출 거의 안해봤고 거의 두지문에 한개씩은...
-
영어오답 1
해야하나여 일주일에 푸는 영어 문제 합쳐서 모고 3개정도 분량은 되는 것 같은디...
-
확인해주시겠어요? ㅠㅠ
-
배민으로 시키려다가 방문포장이 더싸다는걸 생각했어요
-
ㅇㅈ 2
자아성찰과 메타인지 ㅇㅈ
-
답지풀이말고 천재적인 풀이같은거 있잔아 굳이 n축같은 교육과정 외 스킬 안...
-
?
-
과외 가자... 6
호르몬 댕3끼..
-
"중앙선관위 연수원서 중국인 99명 체포해서 오키나와로 이송" 보도 나와 12
중앙선거관리위원회 연수원에서 체포된 중국인들이 주일미군기지로 압송됐다는 보도가...
-
이거라도줘라..ㅜㅜ
-
What's up, guys? This is Ryan from Centum...
-
올바른 방향 3
주식하면서 느낀건데 그게 줠라 어려운거임 그거만 알면 워렌버핏 수익률 넘기는건...
-
저능부엉이랑 ㄴㄱ있더라
-
시대기숙 이야기가 없어서 일단 강대 의대관 기숙 신청하려는데 자율선택은 보통 어떻게...
-
내가 뒤져서 영혼 상태로 막 돌아다니는 꿈 꿨음 그러다 헉!!! 하면서 일어났는데...
-
마라탕 먹어야지 0
기름진거 먹지 말랬는데
-
요듣노 0
호시마치 스이세이의 길동무 노래 너무 좋음
-
조발하는꿈꿨음 0
어림도없지
15번 귀찮 ㅋㅋㅋㅋ현실적이네여
편집까지 하시는 모습 멋집니다!
어렸을 때부터 컴퓨터 타자 치는 것을 좋아했어서 ㅋㅋㅋㅋ 손글씨로 정리하는 것보다 overrightarrow, frac, int 몇 번 입력하는 것이 편하네요. 읽어주셔서 감사드립니다!!
I'm heterosexual
2023학년도 고3 10월 수학 기하 27번 (나) 조건 해석에 있어 좌표를 도입하는 것은, '벡터를 위치 벡터로 해석할 수 있다면 논증 기하를 해석 기하로 전환할 수 있는 것이기 때문에 새로운 맛으로 접근해볼 수 있다' 정도로 필연성을 부여해볼 수 있겠습니다!
저는 무한등비급수도형 같은 문항 풀 때에도 잘 안 보이면 xy 평면 잡아서 직선의 방정식과 교점의 좌표들 일일이 다 구해보곤 합니다, 막힐 때 은근 도움이 되니 익혀두는 것이 좋다고 생각합니다 (찾아내지 못한 닮음 상황이나 직선의 기울기 관련 상황에 주로 도움이 된다고 느꼈습니다)
혹은 주어진 벡터방정식의 우변을 보고 양변을 5로 나누어 우변의 벡터의 종점이 선분 BD를 2:3으로 내분하는 점임을 발견하여, 점 A와 선분 BD의 2:3 내분점을 지나는 직선(1)과 점 B를 지나고 직선 AD에 평행한 직선(2)의 교점이 점 C임을 이용할 수도 있었다. 기하 선택자 분들의 경우 내분 벡터, 외분 벡터 개념에 익숙하실텐데 그게 먼저 떠오르는 것이 더 자연스러웠을 수 있겠다는 생각이 든다!
p.s. 물론 모 강사님께서 말씀해주셨듯이 평면 벡터 관련 문항은 모두 좌표에 올려 해석 기하적으로 접근하는 것이 머리 덜 쓰고 답은 확실히 구할 수 있는 풀이라고도 생각한다. (본문 풀이)
도형 문제 상황 checklist 항목 몇 개 추가하자면
[] 동위각과 엇각
[] 내분, 외분
[] 내심, 외심, 수심, 방심, 무게중심
[] 스튜어트 정리, 톨레미 정리