10모 수학 공통,확통,미적 손풀이(해설x, 실전풀이)+22번 추가
게시글 주소: https://orbi.kr/00064710051
고3 10월 교육청 수학 모의고사입니다.
해설을 위한 풀이는 아닌지라 생략된 내용이 있을수 있습니다.
(22번은 계산을 좀 헤맨거 같아서 좀 쉬었다가 고민을 더 해보겠습니다. ㅠ)
추가) 22번 아무리 고민해봐도 풀이를 줄일 길이 크게 보이지 않고
첫 풀이의 과정이 오히려 복잡해보여서 정석으로 벅벅 풀어서 추가해둡니다.
(다른 게시물에 올린 영상에서는 추가한 풀이로 풀었습니다.)
추가) 22번 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쉽다 윤석열 패치 되서 그런가
와

떳다... 내.... xx그저GOAT
JOAT입니다만.. ㅠ
진짜 내 시대단과쌤 풀이 보는 줄.. 개부럽다
21번 어떻게 식이 저렇게 나오신건가요?? 무슨 공식이라도 있는곤가..,,
고1때 배운 파푸스의 중선정리와
중학교때 배운 할선정리를 함께 사용한 식입니다.
원의 중심을 O라 하면, 삼각형 OBD에서 F가 BO의 중점이므로
중선정리 BD^2 +OD^2 =2(BF^2+ DF^2) 이 성립합니다
여기서 DF^2 =3/2 를 얻습니다.
할선정리 BF*FC=DF*AF 이므로 양변을 제곱하면
9= DF^2 *k^2 임을 알수 있고 위에서 얻은 DF^2 의 값을 대입하면
k^2=6임을 얻습니다.
?? 진짜 풀이 완전 짧네... 이래야 50분컷 하는구나

좋게 봐주셔서 감사합니다22번 s는 어떻게 구하신 거예요..? 봐도 모르겠네요..
(s,g(s)) 에서 그은 접선이 (-2,0)을 지난다 라고 식을 세우게 되면
두 단계를 거쳐야 하잖아요
1) 접선의 방정식을 구한다. (이것도 도함수 구하는 과정까지 하면 복잡하고요)
2) 접선에 (-2,0)을 대입한다.
그 과정을 한번에 하는 팁인데요.
직선의 기울기 * x값의 변화량= y값의 변화량을 이용해서
g'(s)(s+2) = g(s) 이렇게 식을 세우면 위의 두 단계에서 얻는 결과랑 동치의 결과를 얻어요.
그리고 0<x<4에서 g'(x)를 구하는 과정은 곱미분도 괜찮겠지만
잘 알려진 삼차함수의 비율관계를 생각해보시면
g'(x)의 이차항계수가3이고 g'(x)=0의 두 근이 4/3, 4 임을 알 수있어서요.
g'(x)=(x-4)(3x-4) 임을 바로 알 수 있어요.
타자로 쓴 내용이 알아보기 힘드시면 제 작성글 중 다른 글 보기 하시면
유튭링크 걸어둔거 있으니 한번 찾아보시면 될 것 같아요.