10모 수학 공통,확통,미적 손풀이(해설x, 실전풀이)+22번 추가
게시글 주소: https://orbi.kr/00064710051
고3 10월 교육청 수학 모의고사입니다.
해설을 위한 풀이는 아닌지라 생략된 내용이 있을수 있습니다.
(22번은 계산을 좀 헤맨거 같아서 좀 쉬었다가 고민을 더 해보겠습니다. ㅠ)
추가) 22번 아무리 고민해봐도 풀이를 줄일 길이 크게 보이지 않고
첫 풀이의 과정이 오히려 복잡해보여서 정석으로 벅벅 풀어서 추가해둡니다.
(다른 게시물에 올린 영상에서는 추가한 풀이로 풀었습니다.)
추가) 22번 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가능한 모든 어려운주제 + 당황스러움까지 너무 벽이 느껴지는데
-
감귤 먹는 시골쥐의 우당탕탕 육지 여행 2(서울 편) 9
***사진 많아요. 데이터 & 스압 주의*** 전 편 아 부산에서 서울로 가는 게...
-
옯스타 맞팔해줘 2
unforgettablesnu
-
현실은 벌레만도 못했죠 몰랐어요 난 내가 버러지란 것을 괜찮지가 않아 난 모자르니까...
-
. 10
-
큐레깅!!!! 글씨 너무 예뽀오
-
좋은 밤 보내시고
-
죄책감시발
-
ㅈㄴ무서웠다 12
갑자기 누워있는데 화상벌레(청딱지개미반날개)가 나타난거임.. 그래서 당장 화장실가서...
-
자러 감 1
근데 자다가 죽으면 어캄
-
시작만 하면 그래도 일은 굴러가는데 그 과정을 하기 싫다고 시작도 안해버리잖아 그냥...
-
큰거왔다 1
캬 네버엔딩스토리라니
-
잡담글만 써야지
-
ㄹㅇ 다 존나 못하는데 입만 존나 터네 재명 마렵ㄴㅔ
-
수학. 물2만 쓸꺼야
-
작년 강k라 보면 됨
-
자지마요 0
고추마요
-
이제 자야지 13
유튜브 하나만 보고 낼 더프 보는 사람들 잘자
-
문제집몇장푸나요 난이도상관 ㄴㄴ
-
허 11
이게 난이도 중이라고?
-
야간알바 2
오래 하는 사람들 ㄹㅇ 존경스러움
-
난 10대임 6
이정도만 공개하겟음
-
모킹버드 쓸꺼얌
-
좆이 내가 된다 2
좆된다
-
6모 묙포 잇음 3
10000점임
-
노래..추천 0
https://youtu.be/OB-ngSYIlV8?si=NQOsDmpFoKNV2pK...
-
와 극적Save. 간신히 분량도 다 채움 햐~
-
저 오늘 생일이애오 이륙이 소원입니다
-
중간에 스트레칭하고 방구끼는거 제외 다이렉트로 몇분정도 집중해서 문제푸심 전...
-
오르지 여러분들 14
안녕하십니까!
-
미적 과외생이 계속 벅벅 지우고 식 여기저기 적어가며 급하게 풀어서 오은영쌤마냥...
-
작수 52214 인가경에서 이정도면 감사해야지..ㅇㅇ
-
아 낼 왜 더프인거야 16
나 킬캠 해강 나머지 들어야한다고오오 시험치기 귀찮다고오 4등급뜨기 싫다고오
-
강민철은 뒷북쳐서 별로 김승리는 별것 아닌걸 굉장히 심각하게 말해서 별로 김동욱은...
-
머리좋음+상위권+N수생이라서 알려줄것도 많고 잘 배워서 좋음.. 이해관계가 맞아떨어짐
-
저런게 재능이구나 싶음 그냥
-
진짜 조진건 난데 다들 기만하고있네
-
보통 수능전까지 5
과목당 실모 얼만큼 푸나요? 100개 넘게 푼다는 글을 봐서
-
반박 안받음
-
지금까지 본 학평, 더프 다 14152122확통주관식2개 이렇게 틀렸는데...
-
진짜 개덥다 1
하
-
물2 개같이 1컷 50 화2 무난하게 1컷 45? 생2 n수생 유입으로 1컷...
-
지2는 잠깐 나가있어 지1화2로 간다
-
지금 테스트이즈리듬 듣는데 좀만 내용 어려워지면 내용이 붕 떠서 정석민쌤 국어...
-
그럼 낮은 22222 뜨면 경외시까지 갈 수 있으니까 서성한중부터는 재능의 영역인거심? 이거 맛나?
-
김범준쌤께서 그런말 하신듯 ㅇㅇ.....
-
근데 또 막상 수능끝나면 롤만 ㅈㄴ할거같음
-
알바 구할때 까지만 일한다고 했는데 빨리 구해지면 좋겠다
-
연령조사 6
-
현우진 김기현 5
재수까지 생각중인 07년생 정시파이터인데 3모 5모 4등급 중간입니다 3점짜리랑...
쉽다 윤석열 패치 되서 그런가
와

떳다... 내.... xx그저GOAT
JOAT입니다만.. ㅠ
진짜 내 시대단과쌤 풀이 보는 줄.. 개부럽다
21번 어떻게 식이 저렇게 나오신건가요?? 무슨 공식이라도 있는곤가..,,
고1때 배운 파푸스의 중선정리와
중학교때 배운 할선정리를 함께 사용한 식입니다.
원의 중심을 O라 하면, 삼각형 OBD에서 F가 BO의 중점이므로
중선정리 BD^2 +OD^2 =2(BF^2+ DF^2) 이 성립합니다
여기서 DF^2 =3/2 를 얻습니다.
할선정리 BF*FC=DF*AF 이므로 양변을 제곱하면
9= DF^2 *k^2 임을 알수 있고 위에서 얻은 DF^2 의 값을 대입하면
k^2=6임을 얻습니다.
?? 진짜 풀이 완전 짧네... 이래야 50분컷 하는구나

좋게 봐주셔서 감사합니다22번 s는 어떻게 구하신 거예요..? 봐도 모르겠네요..
(s,g(s)) 에서 그은 접선이 (-2,0)을 지난다 라고 식을 세우게 되면
두 단계를 거쳐야 하잖아요
1) 접선의 방정식을 구한다. (이것도 도함수 구하는 과정까지 하면 복잡하고요)
2) 접선에 (-2,0)을 대입한다.
그 과정을 한번에 하는 팁인데요.
직선의 기울기 * x값의 변화량= y값의 변화량을 이용해서
g'(s)(s+2) = g(s) 이렇게 식을 세우면 위의 두 단계에서 얻는 결과랑 동치의 결과를 얻어요.
그리고 0<x<4에서 g'(x)를 구하는 과정은 곱미분도 괜찮겠지만
잘 알려진 삼차함수의 비율관계를 생각해보시면
g'(x)의 이차항계수가3이고 g'(x)=0의 두 근이 4/3, 4 임을 알 수있어서요.
g'(x)=(x-4)(3x-4) 임을 바로 알 수 있어요.
타자로 쓴 내용이 알아보기 힘드시면 제 작성글 중 다른 글 보기 하시면
유튭링크 걸어둔거 있으니 한번 찾아보시면 될 것 같아요.