작수 22번 출제의도는 그래프 풀이 (오피셜)
게시글 주소: https://orbi.kr/00064608213
19 수능 출제의도.pdf
20 수능 출제의도.pdf
21 수능 출제의도.pdf
22 수능 출제의도.pdf
23 수능 출제의도.pdf
평가원 공식 홈페이지를 돌아다니다가
https://www.suneung.re.kr/main.do?s=suneung
수능 교육과정 근거 (이하 출제의도) 를 공식적으로 밝히고 있었다는 것을 이제 발견했네요!!
이 문제, 직관이 좋지 않거나 저처럼 머리가 잘 굴러가지 않는 분들을 위해
이렇게 직접 g(x) 식을 작성해 (나) 조건 적용하고 (다) 조건 마저 써서 답 내는 풀이를 권해드리곤 했었는데
평가원에서 공식적으로 '그래프'와 '평균값 정리'라는 워딩을 박아버려서... 여기에 초점을 둔 풀이를 우선적으로 강조하는 것이 적절하겠다는 생각이 들었습니다.
물론 '근거'일 뿐 다른 풀이를 제한하거나 지양하지 않기 때문에 (공식 해설이 없는 점 등에 근거) 다양한 풀이를 익혀두는 것이 좋겠다만
2019학년도 이후의 수능 시험지들은 평가원 공식 출제의도에 맞추어 공부하는 것이 학습에 도움이 될 수 있겠습니다!
이전 자료들은 없는 것인지 내린 것인지 못 찾겠습니다, 그럼 연휴 마지막 날 다들 파이팅하시고 내일부터도 다시 파이팅입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
허수 25성적표 3
외로워서 올해는 커뮤에서 얘기하다 갈거같은데 작년에 학교에서 지랄나서 그렇다 하지만...
-
내년 시험 준비중이라서 올해 수강하게되면 강민철T 강기분 후 기출풀이 내년에 새기분...
-
브릿지 팁 0
학교 수업시작 종치고 풀기 시작해서 다시 종치면 그만두셈
-
김승모 킬캠 꿀모 더데유데
-
스쿠나가 마허라 잡을려고 복마어주자 를 전개하는데 나레이터로 “스쿠나의 영역...
-
님들 저 프로필 어떰 11
평가점 정병호 사탐 화1 박종민 사문 지인선 환급 정법 물리 최적 영어 하사십
-
지금 4규 이해원 문해전시즌1 풀었는데 더 풀만한 n제 있나요? 드릴은 메가를...
-
크흑 수특을 한번도 펼쳐보지않았지만..
-
경찰대 사관학교 1
현역이고 정시준비하고 있는데 실력확인 차 시험 보는 거 어떤가요?? 그리고...
-
시간 넉넉하면 그냥 30문제 있는거 푸는게 좋은가요?
-
쌤들한테 연락 함 돌려야게ㅛ네
-
오지훈 후드티 0
오지훈 후드티 있으신 분 계실까요?? 제가 오지훈 선생님을 정말 좋아해서 가지고...
-
이기상 선생님 개념 강의할때 석유는 울여서 등이 압도적으로 많다라는 말은 들었는데,...
-
공부 뭐하셨음ㅜㅜ 기출+실모만 해도 1뜨나요?
-
내신 망해서 정시파이터로 돌렸는데 어케 공부해야될지 모르겠어서 조언좀 구합니다....
-
아 7
얘기하면 이건 ㄹㅇ 짤없겠지.. 계정 지켜..
-
D-184 2
국어 유기 수학 1. 시발점 기하 스텝1 Theme9~10 Theme...
-
일본 갔는데 입던팬티 상점에서 파는거보고 깜짝 놀램. 사진도 있는데 수위때매 뭔가...
-
본인 배경화면이 3
죽음의 섬이라는 그림임요. 중1때부터 쭉 안바꾸고 있던...
-
프사 ㅅㅂ ㅋㅋㅋㅋㅋㅋ 12
-
나 미니 못잃어서 못바꾸겠으요 ㅋㅋㅋㅋㅋ 미니 또 안나오려나
-
발 조언좀 17
실수로 하숙집에 양말을 두고와서 같은 양말 이틀 신었더니 발 꼬란내가 래알 국밥인...
-
신택스만 3년째 보고있는데 적당히 해석은 되거든요 근데 24수능은 거의 해석 안됐고...
-
생윤 필기 복습 22년 3월 교육청 모의고사 : 38점...
-
원점수 평균 66...
-
제가 직접 찍음
-
아직 고장은 안났는데 . .
-
농담농담~
-
들으시는분들 궁금합니다.
-
스텝1 지수로그함수 74문제 중에 9개 틀렷는데 타율 좋은 편인가요? 스텝2부터는...
-
서울대가 가고싶은데 10
사1 과1이라 이과도 못가고 제2외 3등급 받을자신 없어서 문과도 못가는 그렇다고...
-
인증합니다. 33
얼굴 인증이 아니라 핸드폰 배경화면 인증이었어요~ 예상 댓글) 아 속았네, 님아.
-
육사는 있던데
-
ㅂㅂㅇ 13
하루끝
-
매우 기출스러움 ㄹㅇ (+ 수정 닫힌구간 [ -1, 0 ] -> [-6, 0] )...
-
확통 아이디어를 듣기로 정해서 오늘 책이왔다. 확통 아이디어 6강을 들었다....
-
극한과 절댓값 질문 10
일반적으로 성립한다. 부분은 연속함수는 함수값=극한값임을 생각해보면 알 수 있음...
-
존나 내잘못아닌데 좆될까봐 걱정됨
-
공부방향 질문 1
반수 준비중입니다 제가 수학을 평소에 잘하는 편인데요 개념이 가물가물해서 지금...
-
범준쌤은 강의를 듣는 시점이 겨울방학이라고 확신하고 말하시는데.. 나는 왜ㅜㅜ
-
6평날이 발표 날짜랑 겹쳐서 발표는 내가 안 해가지고 중요한 시험이랑 날짜가 겹쳐서...
-
언매 비문학 문학 18
15 25 40이 정배인가요
-
국어 기출 DB 자이스토리 문학 커넥텀 문법 빨더텅 수학 시대 기출 모어 수1,...
-
언매 몇 분 걸리세여? 12
평가원 기준
-
6평대비 모고 이감 쓰시나요???
페이지가 없다는데요..? ㅜㅜ
https://www.suneung.re.kr/main.do?s=suneung
들어가셔서 알림마당 > 공지사항 > 검색어에 '근거' 입력하시면 확인하실 수 있습니다! url 자체를 클릭하여 들어가는 것은 인위적으로 막아둔 것인지 아님 오류인 듯하네요

감사합니다!이러면, 그래프 풀이가 엄밀하지 않다던 몇몇 강사분들은...

어떤 선생님들이 그렇게 말했는지 귀띔좀정병훈

그분이야 뭐.. 예전부터 다양한 풀이 지향하신분 아닌가요?좋아요 노무 많네
병훈쌤 싫어하는거 아닙니다 ㅋㅋ
22번 수식풀이도 열심히 봤어요
그러한 말씀을 하셨던 강사 님들께서는 어떤 풀이를 지향하셨는지도 궁금하네요!
이제 평가원 자료 출제진이 쓰는거 아니라 의미없다도르 시전할예정 ㅋㅋ
전부 꽁꽁 숨기는줄 알았는데 교육과정 이수기준에 대한 부분만 맞춰서 알려주긴 하는군요 ㅋㅋㅋㅋㅋ..
저도 문항만 출제하고 해설이나 출제 방향 등은 따로 공개하지 않는 것으로... 가끔 가다가 이전 기출 문항 갖고 수능 소개 자료에 소개할 때 조금씩 드러내는 것 외에는 이렇다 할 것이 없다고 알고 있었는데 저렇게 명시된 공식 자료를 확인하니 새롭고 좋네요! 참고하여 문항들 다시 분석해봐야겠습니다
첨 알았네요
저도 오늘 알았습니다! 참고하기 좋다고 생각해요

근데 뭐 수험생 입장에서야 의도따윈 중요하지 않은듯 걍 어떻게해서든 때려잡아서 맞추면 되니주어진 문항이 어떻게 만들어졌는지, 왜 만들어졌는지를 이해하는 것이 문항을 어떻게 해결해야하는지 깨닫는 데에 큰 도움이 된다고 생각하고 있습니다. 그래서 수험생일수록 문제의 의도를 파악함과 동시에 다양한 풀이를 지향하는 태도를 함께 지닐 필요가 있다고 생각합니다.
물론 현장에서는 어떻게 해서든 답만 맞추면 그만이긴 합니다 ㅋㅋㅋㅋㅋ
이해못한 통통이들은 확추...
그래프, 평균값 정리 적용하는 풀이는 유튜브에 시각적으로 이해하기 편한 영상들이 많습니다! 수식 풀이는 (다) 조건에 f(0)=-3 이용하여 f(x)=x^3+ax^2+bx-3 (a, b는 실수) 정도로 설정하고 (가) 조건을 [f(x)-f(1)]/(x-1)=f'( g(x) )로 정리하여 다 대입해보시면 됩니다.
(혹시나 글 이해 못하신 학생 분들을 위해 댓글 빌려 남깁니다)
어허 호형훈제를 음해하려는 평가원의 계략이다
정병훈T 해설 제가 사랑합니다... 1711가30이나 221114 수식 풀이 보고 사랑에 빠져버렸습니다
그래프 풀이랑 식풀이랑 걸리는 시간이 다르긴 하더라고요
그래프 풀이 지향이 맞다고 생각합니다!! 다만 현장에서 그래프 그려 상황을 파악하기 어려운... 저와 같은 수험생 분들께는 수식 풀이도 권해드리고 있습니다. 1711나30, 221112, 2406미28 등을 수식 풀이로 밀어버리는 훈련으로 다루어두면
231122도 수식 풀이로 밀 때 현장에서 더 빠르게 풀렸을 것이라고도 생각합니다
오 이거 참고하기 좋다!
그쵸! 22, 23 수능 정도라도 참고하여 학습해두면 24 수능 대비에 도움 될 것이라고 생각하고 있습니다
문제결과물이 어찌되었든간에 출제의도는 그래프해석이었다~..
이거지 ㅋㅋㅋㅋ
평가원 학습방법 안내에 가능한 선에서 최대한 해설 하더라구요
출제 근거에 함수의 그래프의 개형을 그릴 수 있다, 함수에대한 평균값 정리를 이해한다
(가),(나) 조건에서 f(x)와 g(x)의 관계를 파악할 수 있고 (다)조건에서 조건을 만족하는 함수 f(x)를 구할 수 있다라고 해설
평가원 공식 홈페이지 자료마당>수험자료에 나와있는 '2024학년도 대학수학능력시험 학습 방법 안내' 76페이지 부분 말씀해주신 것이죠? 함께 살펴보면 학습에 도움 될 것이라 생각 들더라구요
그리고 개인적으로 f(x)의 정체가 y= (x-2)³+5라는 매우 간단한 함수라는 점도 의도적으로 이렇게 한걸까? 생각하는데
접선에 대한 차이함수로만 계산하는 것과 함수 f(x)를 구하는데서 계산 난이도의 차이가 극명하게 생기는 듯하네요
파일 속 출제 의도에 맞는 정석 풀이는 f(x)-(px+q)=(x-1)(x-5/2)^2로 두고 (가) 조건으로부터 f'(1)=f'(g(1)) 얻어 g(1)=3 확인하고 (다) 조건에서 f(0)=-3과 f(3)=6 통해 p, q값 결정하는 것이 아닌가 생각하고 있습니다!
예시로 그래프 그려 상황 파악할 때 주로 f가 서로 다른 두 극값을 지니는 상황을 생각했을텐데 실제 결과는 어떤 상수함수에 삼중근 가지며 접하는 형태라 신기했어요
정병호는 저런거 순진하게 정말 교수가 쓸거라고 생각하냐고 어차피 부하직원 잘 모르는 사람들이 여기 단원이 이거니까 이거 쓰는거라고 대충 단원명만 알려주는거라던데
정병호 선생님께서 그렇게 말씀해주셨었군요! 알려주셔서 감사드립니다. 그래도 '그래프'와 '평균값 정리'라는 워딩이 '합성방정식'이나 '합성함수' 해석 대신에 들어와있다는 점이 의미 있다고 저는 느꼈습니다
평가원 교수님들이 쓸 가능성이 높은게 오류시비 생길때 대비해서 분명 저런 자료들 작성하는 것으로 알고 있습니다. 정리는 실무자가 한다고 해도 말이죠...
미궁의 문 사건 이후에 출제 하신 분이 직접 가서 출제 의도와 근거 같은것들 정리해서 올린게 시초로 아는데
그건 정병호 qna가서 달아보시는게
???: 진짜로 교수가 쓴거면 그 교수가 실력이 없는것
강사하실기 아니고 교수 하셨어야 됐네요 ㅋㅋㅋㅋ
2019학년도부터 공개하기 시작했어요
알려주셔서 감사드립니다, 어떤 계기가 있었다면 무엇이었을지 궁금하네요
https://www.topdaily.kr/articles/22479
감사드립니다!! 지진 연기가 18수능이었군요... 교육과정 외 출제 논란을 줄이기 위한 명시가 목적이었군요