미적분학의 기본 정리 (FTC) 증명
게시글 주소: https://orbi.kr/00063696681
참고로 FTC는 the fundamental theorem of calculus의 줄임말입니다.
증명해봅시다!
구간 [a, b]를 n개의 구간으로 나누고 각 구간의 경계를 작은 수부터 a, x_1, x_2, x_3, ... , x_(n-2), x_(n-1), b라고 합시다. 고등학교 미적분에서는 구간을 등분하여 구분구적법을 설명하지만, 실제로는 꼭 등분할 필요는 없습니다. 마찬가지로 각 구간의 경계에서의 함숫값을 택할 필요 없이 구간 내의 아무 값이나 골라도 괜찮습니다. 자세한 내용은 각자 미적분학에서 Riemman Sum 찾아봅시다.
여기서 평균값 정리를 이용하면 다음을 얻을 수 있습니다.
이때 F'(x)=f(x)이므로 이를 이용해 앞서 얻은 식을 정리하면
위와 같습니다.
이제 양변에 극한을 걸어주면, 우변의 극한이 수렴할 때 정적분의 정의에 의해
가 됩니다. 물론 우리는 f(x)가 연속함수일 때만을 다루므로 극한은 항상 수렴합니다.
따라서
가 성립함을 증명했습니다. 다음!
구간 [a, b]에서 연속인 함수 f(x)에 대해 함수 g(x)를 위와 같이 정의할 때
가 됨을 증명해봅시다. 편의상 h>0일 때부터 생각해보면
이고 최대 최소 정리에 의해 구간 [x, x+h]에서 f(x)는 최댓값과 최솟값을 갖습니다.
구간 [x, x+h]에서 f(x)가 x=k_1에서 최솟값 m, x=k_2에서 최댓값을 M을 지닌다 할 때 다음이 성립할 것입니다.
이제 각 변에 극한을 걸어주면
에서
이기 때문에 함수의 극한의 성질에 의해 (샌드위치 정리)
가 성립함을 확인할 수 있습니다.
h<0일 때도 같은 방식으로 다루어주면 다음의 결론을 얻습니다.
이때 f(x)가 연속함수이기에 g(x)는 미분 가능한 함수이고 따라서 좌변의 극한이 수렴해 g'(x)=f(x)임을 알 수 있습니다.
0 XDK (+100)
-
100
-
잇올 노원이라고만 말 해줌 담배 밥먹고 쉬는시간에 매번 피는데 어떤 뒤에서 여자애가...
-
ㅋㅋㅋㅋㅋㅋ
-
Google AI Studio에서 가능함 Gemini 2.5 <- 현재 모든 ai...
-
경기도버스가 왜 1
대구에있지? 김포가는 버스네 2층버스인데 신기하게생김 타보고싶다..
-
학벌 이득 3
학벌로 이득 보려면 대학 어디 이상 가야한다고 생각함? 난 건대인데 학벌로 불이익은...
-
6모 신청완 1
드가자
-
안녕하세요 저는 서울권 공대 재학생인데요. N반수를 하려고 하는데 정보가 없어서...
-
교육청꺼만 모아놓은 수학 기출 추천 좀 부탁드립니다. 2
평가원은 너기출로 하고 있어서 평가원꺼 끝나고 교육청이랑 N제 같이 풀려고 하는데,...
-
2025년 3월 고1 영어 모의고사 본문분석 by nernter 0
본 자료의 원 저작권은 교육과정평가원(서울시교육청)에 있으며 이를 기반으로...
-
노무 추워서 유두발1기됨...
-
여기에 영어 2면 어디가나요? 3모 의미없는거 알지만 실수가 너무 많았어서 수능때...
-
동네병원도 이런 케이스 많은데 강남은 어떨지 간판에 서울대, 연세대 도배임요? ㅈㄴ 궁금하네
-
??
-
생2 코돈 3
코돈 풀때 전사 ㅈ형 가닥 mRNA 로 바꿔서 푸는게 더 좋음?
-
6/3일날 1
아플 예정(유고결석은 안되니 질병결석을..~~~)
-
슬슬 머리가 아파오는군요
-
신청해야하는데 귀찮네요;;;;;;;; 그래도 오늘 끝내야겠다
-
6모 신청 관련 3
혹시 서울에 위치한 학원 중 현재 6모 외부생 신청 가능한 곳 있을까요..?
-
한완기 수분감 0
뉴런수1,2를 5월 안으로 후딱 끝내고 기출 1, 2권 벅벅풀다 엔제가려합니다,,,...
-
생2 질문 10
삼투일어나서 터질거같을때 세포외배출로 막 집안살림 갖다버리면서 농도 낮추면...
-
부르나요..? 어떤 분이 손 들고 대답해야 한다는데 맞나요..?
-
4규 시즌 1 15문제 드릴드2 10문제씩 풀고있어요, 풀이 시간은 3시간정도...
-
아톰 사이트 실환가 20
뭔가 한참 봤네
-
걍 한번씩 싹 다 대충 훑어서 기출 풀어보고 제일 나랑 맞는걸로 해봐야되나
-
오빠한테 소고기 얻어먹을 건동홍 이상 여대생은 쪽지 줘. ^^
-
고딩이 아니여서
-
기숙사 생활했었어서 모교까지 거리가 멀어서 그런데 집 주변 학교에서는 6모 못보는건가요??
-
그냥 화끈하게 사탐 2개 지를까 고민도 되는데 지구 버리긴 아깝고 참 근데 수능날에...
-
ㄱㅁ하나함 0
6모 신청한다고 오늘 개많이 걸었음 피곤하다
-
수학 개념강의를 듣기전에 먼저 개념서에 있는 개념설명을 읽고 난뒤 강의를 듣는게...
-
여러분은 하루에 몇걸음정도 걷는 게 적당하다고 생각하시나요 23
천보 이상만 걸으면 적절한 거 아닐까요
-
평가원이 정의하는 킬러는 사교육의 스킬이나 방법론을 0
반복해서 쉽게 풀 수 있는 문항들임 킬러는 '난이도'의 문제가 아니라고 못박았음
-
독재 다니는데 여기서..? 여기선 달에 한 번씩 사설봐서 너무 익숙해질거...
-
사랑해 gpt쨩
-
학교에 미리 연락 안하고 그냥 바로 행정실 가셨나요.
-
3수이상 분들 6모 학원이랑 모교 중 어디가 나아요 7
우리 학원에서 응시된대서 학원은 집에서 5분 거리긴함 근데 현장감 때문에...
-
속보) 화성 태행산 정상에 폐오일 뿌린 60대 자수…“텐트치는 캠핑족에 화나서” 3
경기 화성시 비봉면 태행산 정상 부근에 폐오일을 뿌린 60대가 경찰에...
-
여기 왜 오처넌이냐 씨빨
-
젭알
-
진짜 충격적이다
-
죽는다죽어
-
걍 미분해보니까 (a.f(a)) 접선꼴 나오길래 차함수 처리해서 풀었는데 이래도...
-
이번 3모 수학 6
10번 틀리고 22번 맞았는데 은근 이런사람 많을거같은데ㅜ22번은 n제에서 많이...
-
맛점하세요 2
네엡
-
이거 어디가 잘못된 거임? 다시 해서 정석대로 풀긴 풂
-
현역 고3입니다!! 친구들이 강t에서 김승리로 넘어가라고해서 설득당했는데.,....
-
푸느라 개고생했으니 개추좀
-
준?역덕이라 중국 일본 관직, 시대, 후궁 품계까지 다 외우고 있는데 사건이랑...
-
앵그리버드임 반박안받음
이런 거 머리아프고 결과값만을 응용하는 게 관심있다면.. 자연대보다는 공대 파일까요?
증명보다는 대수적인 계산을 좋아하는 쪽이요 ㅋㅋ
프로그래밍도 알고리즘을 유도하는 것보다는 뭔가를 뚝딱뚝딱 만드는 게 좋아서리 ㅋㅋ
문과 파이
들켰노!
상경대에 적합한 인재상이 아닐지!
하긴 요즘은 마케팅이든 인사든 금융이든..
경영학과 전반에서 digital transformation 할 게 너무 많아서요 ㅋㅋㅋ