최소제곱법과 요즘 쓰고있는 논문
게시글 주소: https://orbi.kr/00063695527
계량경제학쪽 논문인데
대개 계량경제학이나 통계 이론 논문들은
1. 모형(데이터가 생성되는 과정)을 세우고
2. 그 모형을 추정하는 방법을 세우고
3. 그 방법이 모형을 잘 추정함을 보이는 경우가 많습니다
제가 지금 쓰고 있는 논문은 1. 2.는 이미 높으신 학자 분이 쓰셨는데 3.이 제대로 안 밝혀져서 이를 밝혀 보자는 내용인데
추정 방법은 최소제곱법이 아니지만 그와 관련이 있어 소개해보자면(수능에도 나왔다길래)
y = bX + e라는 모형을 일반화해서
y = b1X + e 이다가 어느 시점 이후로는 y = b2X + e를 가지는 모형을 생각해보면 (ex - y가 gdp 성장률인데 갑자기 뚝 떨어지는 경우) (이를 ‘구조변화’라 합니다)
(그림 예시... 수능 지문 그것이 가운데가 뚝 떨어져 있는 차이)
추정해야 할 것은 b1, b2와 “어느 시점”인데 최소제곱법의 원리를 확장시키자면
1) "어느 시점“의 후보를 임의로 고정하고 오차항의 제곱을 최소화하는 b1, b2를 찾고
2) ”어느 시점“의 후보들 중에서 오차항의 제곱을 최소화하는 시점이 ”어느 시점“에 대한 추정치로 정해보자
라는 모형을 추정하는 방법(2.)를 세울 수 있는데
이게 실제 그 시점을 잘 추정하는지를 보이는 작업이 필요한데, 여기서 등장하는게 대수의 법칙과 중심극한정리 입니다.
두 정리를 이용해서 보통 데이터가 충분히 주어지면 그 근처로 잘 수렴한다를 보입니다.
밑에는 그 시뮬레이션 결과인데 두번째 그림이 극한값(수식으로 구한 값)이고 세번째가 오차의 제곱합 (나누기 샘플 사이즈) 입니다. 오차의 제곱합이 어떤 극한값으로 잘 수렴하고 이 극한값을 극소화 시키는게 실제 “어느 시점”임으로, 오차의 제곱합을 극소화 시키는 “어느 시점”의 후보가 실제 어느 시점으로 수렴한다는 게 결국 3.을 보이는 거라 할 수 있죠.
그냥 오차제곱합 갖고놀다가 그림도 이쁘고 문득 생각나서 주저리주저리...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 사설 풀면서 기출도 주기적으로 보시나요?
-
테-멘 0
오늘도 감사합니다
-
쾅
-
이정도였나
-
죽엇음 1
꽥
-
빠른삭제 함 13
2년전이네 ㅅㄱ
-
수행평가 엄두도 안나던걸 ㅈㄴ 완벽하게 만들어줌
-
ㅇㅈ할까 6
술먹어서 기분 좋은데
-
롤할사람 1
ㄱ?
-
과제시작. 0
네시간전에시작할계획이었는데
-
정벽 애쉬 출격 6
흐흐
-
주량 어떻게 되심 21
일단 난 1병이라고 말하고 다님 ㅋㅋ
-
너는 지금 뭐해 5
자니 밖이야
-
전 삼겹살이랑 곱도리탕
-
Chat gpt on
-
밸런스 게임 16
-
국어 영역 중 시간 줄이기 가장 수월한 영역은 어느 부분인가요? 1
문학, 독서, 화작(제가 화작러라) 중... 정답률은 그대로 유지하면거 걸리는...
-
현역.. 1
지금부터라도 열심히하면.. 올해 안에 정시로 끝낼 수 있겠죠.. 오늘 너무 충격적인...
-
최적쌤 윤성훈쌤 고민하다가 최적쌤 사문으로 시작하려고하는데 노베인데 개념은 코어강의...
-
반어와 반어적 표현은 다르다.
-
지역인재 농어촌은 해주면서 왜 밤에 일어나는 사람은 배려 안해줌?
-
2022교육개정 0
이랑 고교학점제 잘 아시는분 쪽지좀 주실 수 있으신가요... 물어볼게 있는데
-
머하지 5
진짜모름
-
심심하다
-
일단 한국문학 극혐하는건 둘째치고 비문학도 내가 이원준급의 배경지식을 얻을 수...
-
수악만 잘하는 사람도 잇나 탐구만 잘하는 사람도 잇나
-
하고싶다
-
현재 수분감 스텝 2만 풀고 있는데 현우진 해설이 가끔가다 별로인 것 같아요.....
-
이제 평생 배고프지 않을거임
-
탕 다음
-
진짜
-
긍정항등식은 어딨음
-
집에 가야겠다 0
왜 독서실에 에어컨을 안틀어놓는거야
-
술이나 먹자 6
안주를 사오자
-
a^n+2^n+1|a^(n+1)+2^(n+1)+1 자연수 a,n
-
자연수...
-
(4x-y)(4y-x)=30^6. x,y자연수(x,y)의 개수는?
-
확통사탐 기준 노베로 어디까지 가능할까
-
풍경이 아름답죠? 가는 길 외롭지 않게 응원해주세요. 하 집까지 겁나 머네 진짜
-
x^4-2y^2=1x,y 정수해 2개
-
아이폰이고 11
매번 나오는 색은 아님
-
무덤 속의 벙어리를 말한 셈이다
-
sqrt(x)+sqrt(y)=sqrt(z)자연수, x,y,z 해 무한개임
-
일단 정년 연장하는데 청년 일자리가 어떻게 늘어나냐 하니까 너무 극단적이라고...
-
보통어느정도 푸시나용
-
[자료] 공통+확/미/기 전범위 수학 실모 하나 뿌림 6
예에엣날에 만든 문제들 짜깊기해서 만든 문제라서 요즘 트랜드에 맞지 않을 가능성이...
-
부정방정식 풀어보실 15
m^n=n^(m-n)m,n은 자연수
-
x!+y!=x^yx,y는 자연수
네..?

그냥 잡설 해 봤습니다
어허 교과외 라구요
교과외... 인정합니다끄아아악

연대에서 연구하는 것도 좋죠
대학원에 오면 이해시켜 드립니다안녕하세요 경제 통계 복전에 관심 있는 학생인데 혹시 대학원생이실까요?
석사까지 마치고 지금 이세계로 끌려왔습니다..