'모든'의 논리적 오류 | 6평 미적 28번
게시글 주소: https://orbi.kr/00063247483
※ 6월 10일, 글 내용을 좀 더 상세하게 영상으로 풀어서 올렸습니다.
0
독해와 논리를 가르치는 이해황입니다.
이번 미적 28번 논란이 흥미로워서 짧게 글을 써봅니다.
1
2024학년도 6월 모의평가 수학 28번(미적분)
실수 전체의 집합에서 연속인 함수 f(x)에 대하여
{f(x)}²+2f(x)+1이 x=1에 대칭이라면,
{f(x)}²+2f(x)+1 = {f(x)+1}²이므로
{f(x)+1}² = {f(2-x)+1}²이 성립합니다.
따라서 "모든 x에 대하여 f(x)=f(2-x) or f(2-x)=-2-f(x)"라고 할 수 있습니다.
그런데 이로부터 "모든 x에 대하여 f(x)=f(2-x) or 모든 x에 대하여 f(2-x)=-2-f(x)"라고 할 수는 없습니다.
2
"모든 사람은 남성이거나 여성이다."가 참일지라도
"모든 사람은 남성이거나 모든 사람은 여성이다."가 도출되지는 않습니다.
왜 그런지 바로 이해가 되는 분들도 있겠지만, 그렇지 못한 분들을 위하여
사람이 p, q 둘만 있는 가능세계1)를 살펴보겠습니다.
각주 1) 가능세계는 2019학년도 수능 국어영역에도 나왔고 PSAT/LEET에 모두 나온 적 있는 중요 논리학 개념입니다. 만약 이 개념을 잘 모른다면 가장 쉽게 이해하는 '가능세계' [두뇌보완계획100] 3분짜리 영상을 참고해주세요.
이때 가능한 세계는 아래 표와 같이 4가지입니다.
"모든 사람은 남성이거나 여성이다."는 w1, w2, w3, w4 모두에서 참입니다.
반면 "모든 사람은 남성이거나 모든 사람은 여성이다."은 w1(모든 사람이 남자)와 w4(모든 사람은 여자)일 때만 참이며 w2, w3일 때는 거짓입니다.
정리하자면, "모든 사람은 남성이거나 모든 사람은 여성이다."가 참이면
"모든 사람은 남성이거나 여성이다."는 참이지만, 그 역은 성립하지 않습니다.
3
논리학자들은 '모든'을 ∀으로, or(이거나)는 ∨으로 나타냅니다. ∀는 all을 뒤집은 것이고, ∨는 or를 뜻하는 라틴어 vel에서 가져온 것입니다. 참고로 and(이고)는 ∨를 뒤집은 ∧으로 나타냅니다.
지금까지의 논의를 기호를 활용하여 간결하게 나타내면 다음과 같습니다.
∀x(Ax∨Bx) ≢ ∀x(Ax)∨∀x(Bx)
구체적으로는 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx), ∀x(Ax∨Bx) ← ∀x(Ax)∨∀x(Bx)로 분리하여 생각할 수 있습니다.
4
2019학년도 LEET 추리논증에 이러한 변별을 묻는 문제가 나온 적 있습니다. 지금까지의 논의를 잘 따라왔다면, 아래 고난도 문제를 단박에 풀 수 있습니다. 핵심은 ㄷ입니다.
논리훈련이 되어 있지 않은 분들은 ㄷ을 적절하다고 판단합니다. 그런데 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx)이므로 ㄷ은 적절하지 않습니다. 즉, "모든 환자에게서 병원균 α와 β 중 적어도 하나가 검출된다"가 참이라고 해도, "모든 환자에게서 병원균 α가 검출되거나 모든 환자에게서 병원균 β가 검출된다"가 참이라고 할 수 없습니다. (참고로 정답은 ② ㄴ입니다.)
5
지적 호기심이 있는 분들을 위하여 양화사 분배에 대한 몇 가지 성질을 적어두겠습니다. 2에서 제가 표를 그린 것처럼 가능세계를 중복없이 누락없이 떠올려보면 충분히 혼자 이해할 수 있을 겁니다.
①∃x(Ax∨Bx)≡∃x(Ax)∨∃x(Bx)
②∀x(Ax∧Bx)≡∀x(Ax)∧∀x(Bx)
③∃x(Ax∧Bx)≢∃x(Ax)∧∃x(Bx)
④∀x(Ax∨Bx)≢∀x(Ax)∨∀x(Bx)
이때 ∃는 "어떤 ~가 있다"는 뜻으로, there exists에서 가져온 기호입니다.
참고한 자료
1. 2024대비 6월 모평 미적분 28번 대칭성 풀이의 논리적 오류에 대하여
2. 논리개념 매뉴얼5.0(이해황, 2023) (2의 설명은 이 책에서 가져옴)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능공부랑 논술공부 다 한단 전제면 연논보단 고논이 더 쉬운가요 6
근데 논술해봤다는 동기들한테 물어보니 고논 문제도 그렇게까지 쉬운건 아니라고들 하길래...
-
누구들을까요
-
7시 기상 7시 ~ 7시 반 오르비 정독 7시 반 ~ 8시 빡갤 정독 8시 ~ 8시...
-
시대컨 0
평가원 기준 13, 20번 (4점 허리부분)이 간혹가다 오래걸리고 흔들리는데 시대...
-
차은우 페이커 0
대신 대성은 날 광고모델로 썼어야했는데 감다뒤노
-
진짜임요?
-
뒤통수치진 않겠지
-
과장 조금 보태서 "과학/기술 지문 때문에 " 국어 1등급 못받는 사람임. 중학교때...
-
온갖 내란성 질환들이 완치될 시간이다
-
무효되냐
-
치코쿠 치코쿠 15
어 시간아 흘러보세요 택시 타면 그만~
-
으하하하하 5
으하하하하하
-
뭔가 시험을 치면 집중이 안되고 흐리멍텅 해진다고 해야되나... 원래...
-
학교가면 친구도 있을거 아니야 이 기만쟁이들
-
홀린듯이 맥주구경함 다행히 정신차림
-
아니 왜 존예 여르비는 14
금테고 나 같은 평범 여르비는 아직 은테인거임
-
시발 2
-
생윤이 파고들수록 은근 개념이 많다는데 반수생이라 시간상 탐구 두개를 새로 다...
-
여기 창문에서도 육안으로 여의도가 보이는데
-
정치적 상황과 전혀 관계 없음 어쩔 수 없이 늦잠 잔 거 때문임
-
인프라 개박은 동네에 중도는 개좋음 갈 때마다 울 학교 나쁘지 않은거같기도하구
-
오리온 작년꺼 시즌 1 Day 8 3번임다 일단 저 그래프 X축이 값이 클수록...
-
안그래도존나무서운데 도망도안가;
-
오늘은 집에서 쉴게요 가고 싶었는데...
-
ㅇ..
-
어 2
36분이라니 지고쿠 지고쿠
-
D-223 0
영어단어 영단어장 day 2(80단어) +추가 표제어 암기 영어 수능특강 3강...
-
지각이야 지각~ 4
-
얼버기 0
부지런행
-
젭알
-
나만 강의가 한두개 뜨는거임? 교재 사야 강의가 다 뜨는건가요? 왜 강의가 전부...
-
얼버기 19
-
음냐링 3
30분만 더 잠
-
ㅇㅂㄱ 9
-
ㅇㅂㄱ 0
-
ㅇ
-
이제 진짜 거의 두 달 남았네.
-
얼 1
음
-
어르버르기 3
-
시대인재 3관 0
혹시 창가 근처 자리면 자동차 소음 좀 심하지 않나요?
-
얼버기 0
좋은하루
-
최근 수능국어 시험들 난이도 나열해보면 21 - 적절함 22 - 씨발 23 -...
-
아가 일어낫어 0
아웅졸려 얼버기!
-
얼버기 0
좋은 아침입니당
-
국어 커리큘럼 0
제 국어 커리큘럼 봐주실분 구합니다
-
잠잘못잔것도아닌거같은데머리를오른쪽으로살짝만기울여도목이너무아픔왼쪽으로기울였을땐안아픔거의1년째이럼
수학까지 잘하시는 국어 강사님...ㄷ
해설강의 찍고 편집할 때면 이 세상 다른 모든 것들이 흥미로워져서 큰일이에요 ㅎㅎ
제가 공부할때와 같은 모습이시군요..
x가 하기 싫을 때는
x보다 더 하기 싫은 것을 찾으면 좋더라고요. ㅋ
오 ㅋㅋ 써먹어 보겠습니다
그저 GOAT...
고맙습니다. :)
와 설명 진짜 잘하시네요. 이해가 쉽게 되네요
고맙습니다. PSAT/LEET 수험생들에게 하도 질문을 많이 받다보니, 자연스럽게 설명이 진화(?)했습니다. ㅋ
비트겐슈타인의 논리철학논고를 통해서 1차 술어논리에 대해 혼자 공부할 때가 떠오르는 글이네요. 잘 읽고 갑니당
재미있게 읽어주셔서 고맙습니다. :)
논고를 통해서 1차술어논리요?
대단하시네…
어찌보면 당연히 여자와 남자가 동시에 존재할수있다는 생각이 드는데 이걸 수학으로 !
집합과 명제를 좀 현란하게 확장해서 수능/PSAT/LEET를 가르치고 있습니다. ㅋ
쉽게 말하면 모든 사람이 남자이거나 여자일수 있다에서 "모든 사람은 남자" or "모든 사람은 여자"가 도출되진 않는다
네, 그리고 "한 명 뽑아봤더니 남자라고, '모든 사람은 남자'라고 단정해서도 안 된다. " 정도를 추가할 수 있습니다.
요새 수학강사는 국어도 잘하네
오르비 신규 수학 강사 이해황입니다. 잘 부탁드립니다.
10대 때 로즈마리 수열을 투고한 적 있습니다.
https://oeis.org/A026644/a026644.html