미적분 28번의 본질과 변형 문항 12제
게시글 주소: https://orbi.kr/00063226018
28번aaa.pdf
* 수정수정한 문항입니다.
안녕하세요. 한성은입니다.
숟가락을 얹으러 왔습니다.
양 변에 1을 더하는 것도, 루트 씌워 f(x)를 구하는 것도, 대칭성을 이용하는 것도 28번의 본질이 아닙니다. 28번의 본질은 s축입니다. (농담) 첨부 파일 2번 문항만 다뤄봐도 f(x)를 구하는 풀이의 한계점이 보일꺼예요. 제가 설명한 영상 첨부합니다. 참고하세용.
변형 문항은 6번까지는 수학2 문항, 7번부터는 미적분 문항입니다. 모의고사에 수록할 정도로 가다듬지는 않았지만 연습용으로는 충분할 것 같습니다. 오류가 나오기 좋은 소재라 뭔가 실수가 있었을 법 하니, 문제도 의심하세요.
감사합니다. 행복하세요.
* 오류가 하나 발견되어 수정하였습니다. 10번에 조건 g(0)=0을 추가합니다.
* 두 번째 오류가 발견되어 수정합니다. 11번에 우변 함수를 수정합니다.
난이도 준답시고 우변을 이상하게 박았더니 대칭이 아닌게 되어 있었네요..
* 세 번째 오류가 발견되어 수정합니다. 11번에 조건 0<g(0)을 추가합니다.
f(x)가 x=1에서 극솟값을 갖는 경우를 놓쳤습니다. 이 경우를 풀면 답으로 2가 나옵니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
나까지 슬퍼지네 같이 힘내자 흐에
-
의외로 영어일수도 재능없는놈이 1목표로 하는거면 몰라도 만점목표로 공부를 하겠냐고
-
최근에 진짜 며칠간 개 못생겨진거같은 느낌들어서 거울 볼때마다 짜증남. 심지어...
-
유치찬란 6
해서 오히려 재밌군요 보는 맛이 있었어요 오늘 옯은 여기까지
-
여자임? 4
-
뭘까
-
여자면 여자인거지 어떤 식으로 그걸 어그로소재 삼는단거 실제로 나도 알려드리기 전엔...
-
오르비는 안하니까 아무것도 모르겠노
-
주요 사건들로 정리해봤습니다 지방은 미개하다 발언 이승효쌤 관련 사건 거의 마무리...
-
글리젠뭐냐? 1
3시간만에 왔는데 120개가 쌓여있네 알람이
-
퉆ㄱㄱ
-
올해 초부터 과외가르치고 있는 학생3명중 독재생1명, 그리고 군대에 다녀와서 수능을...
-
사탐은 여고에서 전교1등도해보고 자신있음 이미 11임 국어도 백분위 99-100...
-
버렸을거 같긴함ㅇㅇ
-
다른 n제는 4규만 풀어봤어요 팔구십퍼요 시빌리삼 다 풀었는데 올해 담금질 후기는...
-
이해원 풀고나면 6
좀 쉬운 펀더멘탈가튼거 며칠잡고 준네 빠르게 풀어바야겠다
-
사례금 8000덕
-
개늦은 3모 성적 ㅇㅈ 10
개인정보 안 나오죠..? 전에도 성적표 ㅇㅈ 한 적이 있긴 한데 지금은 수학이 더 떨어졌네여 헣
-
나때는 스타랑 롤이였는데
-
원래 눈팅 위주로 했는데 저 자주 가던 커뮤들 아재 아짐들이 꽤 있다보니 지금...
-
어떤가요??? 첫해라서 좀 어수선할까요!??
-
성균관대 한양대 맞나유
-
사진에 있는 콩자반 곰팡이로 뒤덮여있는데 귀찮아서 아직도 안 버림
-
게이임?
-
ㄹㅇ..
-
씁 한의대로 될까
-
누군가를 뽑을거임 누군진 ㅁ?ㄹ
-
사실 여자임
-
무슨일인가요
-
너였구나 으으
-
실틴 사격장 가기.
-
억울하다 억울해 0
정말로 억울해
-
3주째 술을 먹는구만 흑흑
-
의도한 건 아니지만 2달동안 살이 7키로가 빠졌는데 인상이 완전히 달라짐
-
대학공부 너무 힘들다 10
3점대는 맞을수 있나
-
ㄱㄷ 메타 만들어보겠음
-
깝치지 마 8
너희 다
-
26학년도 6월 모의고사 성적 주작했습니다 죄송합니다 2
사실 신청하는거 까먹었습니다 ㅅㅂ
-
공통 수업을 듣고싶은데 제가 메가스터디 대성마이맥 이런거나 알지 시대인재를 잘 알진...
-
일요일이어서 가볍게 합니다ㅏ
-
사실 카데바전형으로 입학함
-
5모 성적 주작 0
이면 오히려 좋은데?
-
그럴 놈들임ㅋㅋ
-
[속보] 국힘 당원투표서 ‘한덕수로 후보 변경’ 부결 4
국민의힘 비상대책위원회가 10일 한덕수 후보로 대선 후보를 교체하려고 했지만, 당원...
-
ㅂㅅ 3
ㅉ
-
ㅋㅋ
-
[속보] 국민의힘 당원투표서 ‘한덕수로 후보 변경’ 안건 부결 23
국민의힘 “김문수 후보 자격 즉시 회복…내일 공식 후보 등록” 권영세 국민의힘 비대위원장은 사퇴
-
할거면 걸리지라도 말던가

역시 선생님 문항들은 항상 본질적인 것을 물어 좋네요11번 문제에서 극댓값과 극솟값이 각각 6.2 인거를 어떻게 바로 알아내나요??
우변 함수가 코사인이 최대일 때 최소, 최소일 때 최대입니다.
그러면 좌변은 연속함수인데 최대 최소를 가져야하니까 증감이 바뀌는 곳이 필요함을 알겠습니다!. 근데 g가 정해지지 않은 상태에서 바로 f가 극대 또는 극소인 곳에서만 최대 최소가 결정되어야한다는 보장이 있나요?
예를 들어 f'(g(x))가 0이 되는 곳이 없어도 충분히 최대 최소를 만들 수 있지 않는가라는 것 입니다.. 궁금합니다ㅠㅠ
그 부분이 이번 28번과 마찬가지인데, 아래의 g값의 대소 때문에 '건너가야' 하기 때문입니다. 강의 보시고 문항들을 앞에서부터 풀어보면 이해 되실꺼예요.
네 g의 연속성을 위해서는 f가 극점이 되는 x값을 건너야한다는 논리를 써야만 되는거 맞는거죠!...최대 최소만으로는 필요충분이 아니라서 여쭤봤습니다
그런데 혹시 g(3)과 g(1) 값이 모두 3이 될 수는 없는건가요? 꼭 하나의 경우로 확정 되어야하는 상황인건가요ㅡ
g(0)<g(4) 때문에 극댓값을 왼쪽에서 오른쪽으로 건너가야 합니다.
g(3)과 g(1)이 같다고해서 못 넘어가는거는 아니지 않나요??
g에 대한 증감 조건이 구간별로 주어지지 않는 이상 바로 g값을 확정하기는 힘들어보입니다만..
g(2)가 f(x)의 극대점의 x값이 되어야 하고 g(0)~g(2)는 왼쪽, g(2)~g(4)는 오른쪽에 있어야 합니다.
넵 이제 완벽히 이해했습니다. 좋은 문제 감사합니다
11번 x=3일때 f(g(x))값이 3인데 이러면 g(3)=3이 될 수 없지 않나요?
헉.. 맞습니다. 이런.. 제가 잘못 생각했네요 ㅜㅜ
덕분에 오류를 알고 수정했습니다. 감사합니다.
f의 극솟값 x좌표가 4가 아니라 1일 수도 있지 않나요?
아 수정됐었네요
죄송 & 감사
좋은 문제 감사합니다. 28번 처음 해설 듣고 멘붕왔는데 문제 풀고 적용하면서 감잡을 수 있었어요.
고3학생입니다 덕분에 감이 좀 잡히는 거 같은데..
결정된 겉함수 치역의 범위에 따른 속함수의 범위/연속으로 인해 발생할 수 밖에 없는 극대,극소 해석이 속함수가 명시적이지 않은 상황에서 결과를 보고 역추론하게끔 평가원에서 기존의 추론방향을 바꾼 것 뿐인거라고 생각드는데 제가 잘 이해한 것이 맞을까요?
대충 맞는 것 같아요.
선생님 1번 해설 틀린거 아닌가요
g(x) 계수가 양수 아닌가요?
네. 헷갈렸습니다 ㅜㅜ 감사합니다.
썜 12번 g(x) 미분가능 조건 없어도 되나요?
f가 (2,1) 점대칭이고 우변이 (3,1) 점대칭이니까 g가 (3,2) 점대칭+연속이니 미분가능. 이렇게 다시 풀어봤는데 맞을까요?
미분가능 조건은 필요하지 않습니다. 대칭성으로 푸는 것이.. 결과적으로 맞긴 한데 논리를 채우기 힘들어 보이네요. g가 점대칭이 어떻게 나오나요? s축 ;; 경로 선택으로 풀어보세요.
쌤 다시 풀어봤어요. 11번 풀고나니 12번은 바로 풀리는거 같아요
11번에서 경로 선택이라는게 부등식 조건에서 g(0), g(4), g(6), g(10)은 확정되고,
g(x)를 완성할 때 g(1)에서 g(4)까지는 x의 양의 방향으로 쭉 가다가 g(5)에서 계속 쭉 가면 g(6) 값이 2가 되지 않으므로 f의 극대까지 되돌아갔다가 다시 쭉 가면 g(10)까지 이어지게 되니까 값이 해설이랑 같게 나오는데 이렇게 푸는게 맞나요?
훌륭합니다.
좋은 문제 만들어주셔서 감사해요 ❤️
1번 문제에서 실수 전체에서 f가 연속인데 해설에 있는 g에 -2값을 넣은 값을 만족시키는 h의 정의역 값을 f가 못가지는거 같은데 흠.. 제가 뭔가 잘못이해한걸까요?
1번 해설에 '최고차항의 계수가 음수이다.'를 '최고차항의 계수가 양수이다.'로 바꾸면 나머지는 문제가 없습니당.
선생님, 안녕하세요. 저 질문이 있어요. 써밋n제에 짧은 글로 한두쪽 실린 것처럼 <한성은의 수학공부법> 칼럼을 더보고 싶으면 어떻게 해야 하나요? 이거 책이나 블로그 포스팅은 없는지 궁금해요.
엄청나게 늦게 봤군요. https://blog.naver.com/sungeun_82 에 틈틈이 올릴 예정입니다.
선생님 늦게라도 답변주셔서 정말 감사합니다! 블로그에 사진 넘 멋지십니다 ㅎㅎ