2024학년도 6월 평가원 수학 총평 및 해설 - 준킬러가 승부처였던 무난한 시험
게시글 주소: https://orbi.kr/00063183909
mo6su24_2_해설_김준교T.pdf
2024학년도 6월 평가원 수학 총평 및 해설 - 준킬러가 승부처였던 무난한 시험
이번 6월 평가원 모의고사 수학은 전통적인 ㄱㄴㄷ 오지선다형 문제를 주관식으로 만들고 미적분 파트에
킬러 문제가 없는 상당히 특이한 형태의 시험이었습니다. 비록 10번대의 준킬러에서 계산 등이 좀 까다로운
문제들이 있었지만 전체적인 난이도는 무난했기에 특히 좀 어려웠던 지난 4월 모의고사에서 점수가 안 좋았던
현역 고3 학생들은 이 시험을 통해 자신감을 회복할 수 있었을 것입니다. (재수생들은 좀 쉬웠을 듯 합니다.)
그래서 최상위권 학생들은 만점자가 많은 것 같고 22번 하나를 틀린 경우도 많은 것 같은데 다만 이런 평이한
시험에서도 계산 실수를 하거나 중간의 준킬러에서 막히게 되면 점수가 생각보다 안 나올 위험성이 있기
때문에 주의해야 합니다.
문제들을 약간 디테일하게 살펴보면 중간의 10번대 준킬러 문제들의 계산이 복잡했고 오히려 20번대 킬러
문제들 및 미적분 문제들의 계산이 간단했기 때문에 문제를 보고 바로 그래프를 그려서 직관적인 풀이가
가능한 학생이 고득점을 했을 듯 합니다. 그리고 중간 부분 준킬러에서 계산이 복잡해지면 뒷부분의 문제들을
먼저 풀고 다시 되돌아와서 준킬러 문제들을 푸는 전략도 유효했을 듯 합니다.
한편 21번 지수로그 그래프 문제나 29번 접선 기울기 문제는 꽤 오래 전에 평가원에서 출제되었던 옛스러운
느낌이 나는 문제들이었는데 (그래프 개형으로 교점의 위치를 유추해 낸다든지 이차방정식을 세워준 후
근과 계수의 관계를 이용하는 등) 난이도는 쉬운 편이라서 꼭 예전의 기출 문제들을 풀어보지 않더라도
충분히 해결이 가능한 문제들이었습니다.
12번 문제는 집합 A와 집합 B의 교집합의 원소의 개수가 3개인데 b_n의 공차가 a_n의 두 배 이므로 각각
b_1, b_3, b_5가 집합 A의 세 원소와 대응된다고 놓고 풀면 되는 문제였습니다. a_1=b_1인 경우와
a_1=b_2인 경우, a_1=b_3인 경우 세 가지로 나누어서 풀어주면 됩니다.
13번 문제는 전통적인 사인 법칙과 코사인 법칙을 사용해서 푸는 문제였습니다. 각각의 변의 길이의 비가
주어져 있으므로 문자로 두고 정직하게 풀면 되는데, 시험 전체적으로 보면 도형 문제는 이거 하나였지만
도형에 약한 학생의 경우에는 여기에서 막히게 되면 시험이 어려워졌을 듯 합니다. 계산 과정은 약간 복잡해서
시간이 좀 걸렸을 듯 합니다.
14번 문제도 그래프 개형을 통해 가능한 a값이 세 가지 나온다는 사실을 캐치한 후 주어진 그대로 계산하면
되는 문제였습니다.
15번 문제는 경우를 나누어서 나열하면 되는 전형적인 수열 노가다 문제였습니다. k=7부터는 문제의 조건을
만족하지 않으므로 6가지 경우만 직접 해 보면 됩니다.
20번 문제는 직관적 풀이의 중요성을 가장 잘 보여주는 문제였는데, 문제에 주어진 조건을 통해 그래프를
그려 주면 단 세 줄로 풀이가 가능합니다. 난이도는 쉬운 편이었습니다.
21번 문제가 이번 시험에서 가장 특이한 문제였는데, ㄱㄴㄷ 문제를 찍을 수 없도록 오지선다형이 아니라
주관식 문제로 출제되었습니다. 평가원이 좀 심심했던 것 같은데, 특히 ㄷ의 경우에는 정말 예전에 출제되었던
그래프 개형을 통해 교점의 위치를 유추하는 유형이 오랫만에 나왔습니다. 1과 2 사이의 루트2 정도의 숫자를
대입하면 거짓임을 쉽게 알 수 있습니다.
이 시험의 유일한 킬러 문제였던 22번 문제는 그나마 변별력이 있어서 오답률이 좀 높았을 듯 한데, 쉬운 데도
불구하고 의외로 정답을 찾지 못한 경우가 있는 것 같아서 살펴보니 a가 음수인 경우를 생각하지 못해서
못 푼 경우가 있는 듯 합니다. 양수인 줄 알았는데 알고보니 음수였다는 문제는 이미 기존에 자주 출제되었던
유형이므로 만약 이 문제를 틀렸다면 좀 더 다양한 문제들을 많이 풀어보는 것이 좋을 듯 합니다.
미적분 파트에서는 킬러 문제가 없었는데 그나마 28번 문제가 변별력이 있는 편이었습니다. f(0)과 f(2)값의
차이가 2이고 문제에 주어진 함수가 x=1 대칭임을 이용해 f(x)와 f(2-x) 사이의 관계를 유추하면 그리 어렵지
않게 풀 수 있습니다.
29번 문제는 곡선 위의 두 점에서의 접선이 수직임을 이용하는 문제였는데 두 점의 x좌표가 이차방정식의
두 근임을 이용해서 근과 계수의 관계를 사용하면 쉽게 풀립니다. 아주 예전의 수능에 비슷하게 근과 계수의
관계를 이용하는 문제가 출제된 적이 있었는데 난이도는 높지 않은 편이라 꼭 그 문제를 풀어보지 않아도
충분히 해결이 가능했습니다.
30번 문제는 21번 ㄱㄴㄷ 문제와 더불이 이번 모의고사에서 가장 엽기적인 문제였습니다. 전통적으로
미적분 파트의 킬러 문제 번호였던 30번이 사실상의 수열로 출제되면서 난이도가 급격하게 낮아졌습니다.
이번 시험이 쉬워진 것도 결정적으로 이 문제 때문인데, 일반적인 모의고사라면 10번대 준킬러에 출제되는
것이 어울렸을 듯한 문제가 30번에 출제되다 보니 사실상 미적분 킬러 문제가 출제되지 않은 것이
되어버려서 시험 전체적인 난이도가 급하락했습니다. 저는 개인적으로 21번과 30번을 보면서 평가원이
뭔가 장난을 친 것 같은 느낌도 좀 듭니다만 아마 실제 수능에서는 이렇게 출제하기는 힘들지 않을까
합니다. 어디까지나 6월 평가원 모의고사는 수험생들을 독려하고 자신감을 심어주기 위해 좀 쉽게
출제하는 것이 관례이고, 실제 수능에서는 최소한의 변별력을 확보해야 하기 때문입니다.
이렇게 이번 6평 수학은 미적분 30번 문제도 쉬웠고 22번도 그리 까다롭지 않고 비교적 평이한, 어렵지 않은
시험이긴 했습니다만 상대적으로 12번, 13번 등 준킬러 문제들의 난이도가 좀 있다 보니 잘못해서 앞부분에서
막히면 점수가 급락할 위험이 있는 시험이기도 했습니다. 그래서 자칫 잘못하면 96~100점에서 바로 80점대로
떨어질 위험성도 있었습니다. 이번 시험에서의 특이한 평가원 출제 스타일이 9월 모의고사나 실제 수능까지
이어질 지는 미지수입니다만, 만약 점수가 생각보다 나오지 않았다면 문제점을 찾아서 빠르게 보완하고,
점수가 잘 나왔다면 했다면 자신감을 가지고 계속 방심하지 말고 꾸준히 공부하면 좋을 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화요일 공강이라 6모 신청했었는데 6모가 수요일로 미뤄졌네요 수요일에 강의가 많이...
-
제발 서양이나 외국 문학 내줘라 LEET 초창기에 맥베스(윌리엄 셰익스피어),...
-
이미 과 아싸에 화석이었는데 우연히 남후배랑 같은 수업 듣게 됨... 걔도 어느...
-
매일 서바 2회 푸는데 평균 93~96 뜬단 말임 진짜 괜찮은 점수인 거 아는데...
-
얼탱이가 없노
-
휴학하고싶디 0
어어어엉ㅇ
-
현재 시발점, 쎈 하는 중인데 끝나고 뭘 해야 할지 감이 잘 안 잡힙니다… 시발점...
-
맞춤법도 좀 틀려있고 저퀄인 것 같기는 한데
-
젖지대머리 3
내 저녁밥친구 젖지
-
서울대 가고싶다 2
나도 꿈 좀 이뤄보자
-
아는게 있어야 그걸 조합도 해볼텐데 알기가 어렵다.. 공부는 엿같다.. 내가 아는건...
-
조선의 왕위 계승
-
차단하는수가있다 진심임
-
왤케 그림을 그려도 글자는 다 좆같이 쓰냐 받침을 추가하거나 막 지 혼자 모음을 바꿈
-
아님 차 사야되냐
-
Fim 이 너무 재밌다
-
본인 ㅈ된점 4
피규어 팔아서 67만원 나옴 싱글벙글 몽블랑 만년필 중고 미사용 살려함 부모가...
-
국어 실모 구매 0
제가 현역이라 이번에 실모를 처음 풀어보는데요, 이감이나 상상 실모는 패키지로 밖에...
-
시대컨 플로우는 5
재종,현강만 주는건가요? 라이브반은 안주나요?
-
부럽다.
-
진짜 좋네요 영어 감으로 하시는 분들 꼭 들어보셈
-
애정결핍이란 단어를 의학용어를 총망라해 들을 수 있음
-
심심하기도 하고 국어 못해서 성적 올려보기도 하려고 써봣어요 매일 열심히 하다가...
-
젖지대머리에 접선 경계점 그리고 공통접선
-
오늘 올라온 헬스터디3 동영상 봤는데요.. (이채연 학생 95점 받은 거 보고)...
-
저번주 목욜에 혹시 몰라서 달러 떨어질때 50만원정도 사놨는데 올랐네
-
어떤가요? ㄱㅊ나요? 신입생 대상으로 하는거 같던데.
-
공군 전투기 무단촬영한 10대 중국인 "부친이 공안" 진술 2
경찰, 국정원·방첩사와 함께 수사…"사실 관계 확인중" (서울·수원=연합뉴스)...
-
당연한거겠지만 어떻게 그 경지에 오르는거지? 노가다 풀이 생각나면 바로 들어가는 내가 미친건가
-
피쉬킨 라이언스 벤담 데라다 푸코 롤스 밀 보들레르 마르쿠제 호르크하이머 지그문트...
-
으하하 아이고
-
물1 브릿지 1
이게 30분 컷이 가능한가ㅓ임?? 시간도 오버되고 ㅈㄴ 틀리는데…..
-
엄두가 안나서 미루고 있음 그리고 소아온은 이상한 말을 많이 들어서요
-
까비
-
연애고수 ㄹㅈㄷ 5
-
재능충은 못 이기구나.... 그리고 20분 내내 채연누나랑 사귀고 싶다는 생각 밖에...
-
ㅈㄱㄴ 영어 강의 뭐 있는지 잘 몰라서 ㅜ
-
강의 보고나서 혼자서 풀어보려고하면 안 풀리는 문제가 대다수입니다. 답지를 봐야만...
-
준킬러 분석글을 쓸지 아니면 논술 분석글을 쓸지 후자는 쓰는 품이 더 들기 때문에...
-
사비로 간식 사주기(이미지 씹창 방지) 경쟁률이 엄청난 명문 동아리였음을 10분...
-
아직 문제도 안봐서 기대중
-
왜 사걱세가 다른 과목으로 태클 거는 건 못 본 거 같지
-
국어황 ..
-
1기 1화 첫 1분부터 쉽지 않네요 남주 여친한테 차이고 상상하는거랑 대사가..
-
어 형은 공부해야해 신입들한테 동아리 설명만 10분 정더 하고 자습줘야지
-
이번 3모 5등급 나왓음… 올오카 완강까지 분명 다 햇엇음… tiim는 시간도...
-
사설 보단낫겟지?
-
문학은 체화 잘되서 좋은거같은데요 독서는 과학기술지문이 잘 안되네요.꾸준히 하다보면...
-
아 뭐보지 7
고민이네요..
-
난이도가 어느정도 인가여?
첫번째 댓글의 주인공이 되어보세요.