나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
게시글 주소: https://orbi.kr/00062961626
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언론사 ㅅㅂ 이거 놓쳐서 답 왜 안나오지?? 이러다가 아!! 하고 돌아가서 찾음 운영 개말렸다 ㅆㅂ
-
오늘 시험 특 0
수능 전 마지막 더프이자 마지막 풀모임.. 아마 수능날은 어지간하면 뺄 수 있을듯...
-
본인 문창과 실기로 재수했던 삼반수생 이번에는 정시 성적으로 다른 과 가고 싶어짐...
-
수학 썰 0
최초풀이에서 12 14 15 20 21 22 막힘 ㅋㅋ
-
덕코도 주잖아 다해줬잔아ㅠㅜㅠ https://orbi.kr/00073850004/...
-
11뜨겟지? 생윤은 어케 한번도 50이 안 나오지
-
하나 잘봐도 자꾸 다른거 쳐박고 상쇄당해버림
-
7덮 이정도 체감은 아니었을거임
-
국어는 항상 0
시험끝나고 조졌다...싶으면 잘보고 찢었다ㅋㅋ싶으면 조지는듯 시험끝나고는 난 내가...
-
오히려 사문을 생각보다 못봤네
-
더프 수학 사실 컷 높을줄 알았는데 (분쟁조장ㄴㄴ) 1
이게 1~30까지 답이 되는 케이스만 딱 구하려하면 시간이 적게 걸리는데...
-
사문 집단 개수세기 5번 직관적으로 고르고 개수 세봤는데 딱 맞아서 5번 바로 찍고...
-
오답하고 이해원 그리고 설맞이 스페인어
-
그거 물어본 선지 한 3분 고민한 것 같음… 연계를 진짜 더 빡세게 해야겠어 ㅠ
-
7덮 수학 3
14,15,22,29,30 틀 미적 stay Or 확통 run choose choose
-
나는근무가싫어 0
나도잠자고싶어
-
사설치니까 개쳐망해서 효용감 다 떨어지고 진짜 모르겠음 수학때문에 재수하는데 너무무섭다
-
공통이 많이 어려워지면 폭싹 망하는듯
-
더프 언제올라와 4
나도 맛 좀 보자 많이 어려웟나보네
-
ㅅㅂ 함주라..
-
더프는 망했고 0
햄버거나 먹어야지 흐흐
-
진지하게 하루에 한번같은데 좀 심한것같음 도파민중독인가 ㅈㄴ 일주일에 한두번으로...
-
고정 1이던 과목이 지 혼자만 갑자기 뚝하고 떨어짐
-
하
-
수학 76 ㅅㅂ 1
확통 더프 30번은 맨날 ㅈㄴ짜잘한실수해서 나가네 하.
-
사투리를 엄청 쓰는건지 중략 이후로 대체 뭔 소리하는건지 자체를 이해못함
-
으흐흐 2
빨리와
-
세사하시는분.. 0
업나여
-
이제 진짜 얘만 해결하면 될거같은데.. 뭔 청기백기 OX퀴즈쇼도 아니고 점수폭이 너무큼 하...
-
모르겠음 이거 재수한다고 오르는게 아닌거같아 교육청 88받고 오 좀 올랐나했는데...
-
이거 은근 복병이네
-
다 모르겠고 헬스터디만 기다리는 시간빌게이츠면 개추 5
ㅇㄷㄴㅂㅌ
-
너무 힘드네 심적으로
-
더프수학 등급컷 0
76인데 2뜰수잇음? 미적임
-
너무 넘무 싫다....
-
98은 처음이라서..^^ ㅅㅂ
-
5월 전대실모 96 - 6평 84 - 7덮 92 6평날뭔일이있던거지
-
너무궁금함
-
독서랑 문학은 평이했던거같은데 언매가 진짜 ㅅㅂ... 6평끝나고 공부 안해서 그런가
-
69평도 잘봐야함?
-
이게 다시 나올까? 23뉴런에서 공부하고 그후로 못본거같은데... 지수로그 x1...
-
연구자로서의 역량 다 떠나서(어차피 교수들 신경도 안 씀) 의대 공부 잘 하는 학생...
-
7덮 2
7덮 언 91 미 92 영어 2 물1 44 지1 45 이 점수면 서울대 첨융 가능할까요...?
-
ㅇㅇ
-
7덮 언 확 2
보정 등급컷 어케될까
-
이젠 과거형이다 3
무보정 백분위 99 출신 인데 ㅠㅠ
-
대충 그거 대입해보면 될거같은데..
-
오늘 더프 봤는데 지구는 걍 평범한데 생명을 진짜 너무 말아먹어가지고… 지금부터 걍...
-
맥이 좀 빠지네…
-
미적 72 4
2컷 가능한가요? 보정기준으로유
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.