'조건문' 심화 - 기출문제의 흐름 | 어설프게 아는 것보다는 모르는 게 낫다
게시글 주소: https://orbi.kr/00062857411
안녕하세요. 독해와 논리를 가르치는 이해황입니다.
"□이면 △" 꼴의 조건문을 정확히 이해하는 것은 수능/PSAT/LEET 모두에서 매우 중요합니다. 조건문은 논리적 사고의 핵심 도구이기도 하며, 때로는 그 자체가 지문의 주제로 등장하기 때문입니다. 그래서 제가 그간 다양한 글과 강의를 올려왔는데, 이 글에서 기초부터 심화까지 총정리해보려고 합니다.
1. 조건문 기초: 표현법
조건문 "□이면 △"와 논리적으로 동등한 표현이 많습니다. 지문에서 다음과 같은 표현을 만나면 모두 "□이면 △"로 단순하게 환원할 수 있어야 합니다.
출처: 『논리개념 매뉴얼5.0』(법률저널)
덧: "□가 △를 전제한다"는 □와 △가 모두 '문장'인 경우에 위 내용이 성립합니다. □가 논증인 경우는 약간 다른데, 수능 수준에서는 심각하게 알 필요가 없고, PSAT/LEET를 대비한다면 『논리개념 매뉴얼5.0』(법률저널)을 참고하기 바랍니다.
2. 조건문 기본: 추론형식
조건문 "□이면 △"는 전건긍정, 후건부정, 후건긍정, 전건부정 등의 타당하거나 부당한 추론형식과 밀접합니다. '전건긍정'이라고 하니 뭔가 괴상한 용어 같지만, 시험에도 아래와 같이 언급된 적 있습니다.
"고전 논리에서는 전건 긍정 규칙이 성립한다. 이는 “P이면 Q이다.”라는 조건문과 그것의 전건인 P가 ‘참’이라면 그것의 후건인 Q도 반드시 ‘참’이 된다는 것이다." 2018학년도 9월 모의평가 27~32번 지문
이러한 추론형식을 잘 알아두면 지문에서 선지가 추론되는지를 신속&정확하게 판단할 때 도움이 됩니다. 마침 제가 초등학생도 이해할 수 있는 수준으로 쉽게 설명한 강의가 있으니 꼭 시청해보길 바랍니다. PSAT/LEET 수험생분들도 극찬한 강의입니다.
초등학생도 이해하는 필요조건, 충분조건 | 수능/PSAT/LEET 논리학 필수개념
3. 조건문 심화: 일상적 조건문과 전통 논리학 조건문의 차이
조건문 처리가 익숙해지고 나면 많은 문제를 좀 더 간결하고 정확하게 풀 수 있게 됩니다. 그런데 가끔은 오히려 조건문에 대한 지식 때문에 문제를 틀리게 되는 경우도 발생합니다. 상위권 학생이라면 이런 경험이 다들 몇 번씩 있을 겁니다. 그래서 일부는 논리학이 수능에는 쓸모없다며 논리학 무용론을 펼치기도 하는데, 저는 섣부른 판단이라고 봅니다. 오히려 조건문에 대해 더 깊게 공부함으로써 이 문제를 해결할 수 있고, 또 더 높은 사고력에 도달할 수 있기 때문입니다.
무엇보다 독해지문에 등장하는 일상적 조건문과 논리학(주로 논리퀴즈)의 (실질) 조건문이 왜 다른 것처럼 보이는지에 대해 이미 철학자들이 열심히 논쟁해왔고, 수능/PSAT/LEET 모두에 관련 주제가 나온 적 있습니다. 또 출제되더라도 이상할 게 없으므로 그 흐름을 정리할 필요가 있습니다. 개인적으로 "논란 없는 원리"(the uncontested principle)는 강력한 출제예상 주제라고 생각합니다.
그래서 제가 테마특강에서 최대한 쉽게 정리해봤습니다.
https://class.orbi.kr/course/2436
덧: 위 강의를 듣기 전에 [무료] 반사실적 조건문과 가능세계 의미론를 수강하길 추천합니다.
위 강의를 모두 듣고 나면, 아래 지문을 하나의 흐름으로 이해할 수 있을 겁니다.
[수능] 2019학년도 수능 39~42번 지문
"다음 상황을 생각해 보자. 나는 현실에서 아침 8시에 출발하는 기차를 놓쳤고, 지각을 했으며, 내가 놓친 기차는 제시간에 목적지에 도착했다. 그리고 나는 “만약 내가 8시 기차를 탔다면, 나는 지각을 하지 않았다.”라고 주장한다. 그런데 전통 논리학에서는 “만약 A이면 B이다.”라는 형식의 명제는 A가 거짓인 경우에는 B의 참·거짓에 상관없이 참이라고 규정한다. 그럼에도 내가 만약 그 기차를 탔다면 여전히 지각을 했을 것이라고 주장하지는 않는 이유는 무엇일까?"
[LEET] 2018학년도 LEET 추리논증 15번
일상적인 조건문의 진위는 어떻게 결정되는가? 다음 예를 통해 알아보자.
K공항에서 비행기가 이륙하기 위해서는 1번 활주로와 2번 활주로 중 하나를 통해서만 가능하다. 영우는 1번 활주로가 며칠 전부터 폐쇄되어 있다는 것을 안다. 그래서 ㉠“어제 K공항에서 비행기가 이륙했다면, 1번 활주로로 이륙하지 않았다.”라고 추론한다. 경수는 2번 활주로가 며칠 전부터 폐쇄되어 있다는 것과 비행기 이륙이 1번 활주로와 2번 활주로 중 하나를 통해서만 가능하다는 것을 알고 있다. 경수는 이로부터 ㉡“어제 K공항에서 비행기가 이륙했다면, 1번 활주로로 이륙했다.”라고 추론한다.
위 예에서 영우와 경수가 사용한 정보들은 모두 참이며 영우와 경수의 추론에는 어떤 잘못도 없으므로 ㉠도 참이고 ㉡도 참이라고 결론 내릴 수 있다.
그런데 정말 ㉠과 ㉡이 둘 다 참일 수 있을까? 우리가 일상적으로 ‘A이면 B이다’라는 조건문의 진위를 파악하는 (가) 방식에 따르면, A를 참이라고 가정하고 B의 진위를 따져본다. 즉 A를 참이라고 가정할 때, B가 참으로 밝혀지면 ‘A이면 B이다’가 참이라고 판단하고, B가 거짓으로 밝혀지면 ‘A이면 B이다’가 거짓이라고 판단한다. 이에 따라 A가 참이라고 가정해 보자. 그런데 ‘B이다’와 ‘B가 아니다’ 중에 하나만 참일 수밖에 없으므로, ‘A이면 B이다’와 ‘A이면 B가 아니다’가 모두 참이라고 판단하는 것이 가능하지 않다. 그렇다면 조건문의 진위를 파악하는 이 방식에 따르면, ㉠과 ㉡ 중 최소한 하나는 참이 아니라고 결론 내려야 한다. 그러나 이는 앞의 결론과 충돌한다.
[PSAT] 2023년 5급 언어논리37번
조건문 ‘오늘이 3월 4일이면, 내일은 3월 5일이다’는 단순 명제인 ‘오늘이 3월 4일이다’와 ‘내일은 3월 5일이다’로 구성된다. 이러한 단순 명제는 그것이 사실에 대응하면 참이고, 그렇지 않으면 거짓이다. 그렇다면 이것들로 구성된 조건문의 참ㆍ거짓은 어떻게 결정될까? 보다 일반적으로 임의의 단순 명제인 A와 C로 구성된 조건문 ‘A이면 C’의 진릿값은 어떻게 결정될까?
견해 (가)에 따르면 조건문 ‘A이면 C’는 A가 참인데도 C가 거짓인 경우에 거짓이고, 그 나머지 경우에는 모두 참이다. 여기서 A가 거짓인 경우에는 C가 참이든 거짓이든 조건문은 참이 된다. 그러나 A가 거짓인 경우의 진릿값 결정 방식은 우리의 직관에 부합하지 않는 면이 있다.
견해 (나)에 따르면 조건문의 진릿값이 정해지는 방식은 ‘가능 세계’라는 개념을 이용해야 만족스럽게 제시될 수 있다. 먼저 A가 현실 세계에서 참인 경우를 생각해보자. 이 경우에는 (가)와 다를 바 없이 현실 세계에서 C가 참인지 거짓인지에 따라 조건문의 진릿값이 결정된다. 즉, C가 참이면 조건문은 참이고 C가 거짓이면 조건문은 거짓이다. 다음으로 A가 현실 세계에서 거짓인 경우를 생각해보자. 이 경우에는 A가 참인 것 외에 다른 것은 모두 현실 세계와 같은 가능 세계에서 C가 참인지 거짓인지를 판단해 보는 것이다. 만약 그 가능 세계에서 C가 참이면 조건문은 참이 되고, C가 거짓이면 조건문은 거짓이 된다. 가령 실제 3월에 누군가 “이번 달이 4월이면, 다음 달은 5월이다.”라고 말했다면, 이는 참이다. 왜냐하면 ‘이번 달은 4월이다’가 참이라는 것이 현실 세계와 다르고 그 밖의 것은 모두 현실 세계와 같은 가능 세계에서는 현실 세계처럼 4월의 다음 달은 5월일 것이기 때문이다.
덧: 그간의 질문답변 경험에 비춰보면, 어렸을 때부터 책을 많이 읽어온 상위권 학생이라면 '조건문'에 대해 어설프게 아는 것보다는 아예 모르는 게 나을 수 있습니다. 하지만 제대로 공부해둔다면, 자신의 직관이 닿지 않던 더 높은 수준까지 순식간에 도달할 수 있을 겁니다.
0 XDK (+1,000)
-
1,000
-
저도 여르비 언니들처럼 예뻐지고 싶은뎅 어떻게 해야하나용?
-
중경외시뱃 달고 저능아인척 하고 싶다..
-
ㅈㄱㄴ 돈에 대한 미련은 이미 요즘 잔뜩 벌어서 큰 상관 없어서 유튜브 인스타 오르비 그만하려고
-
정신나갈것같애 4
-
원래 눈팅만하다 글쓰기시작한날부터 너무 나태해짐
-
졸려서 이제 자야겟음
-
김현우 겨울시즌 부터 쭉 들었는데 지금까지 악깡버 하다가 슬슬 한계같은데 드랍하고...
-
지문이 뭐 이래 추상적임
-
작년 지구 10
찍맞은 영향이 없는걸까요 왜케 잘하는겨 사람들
-
어떤 오르비언이라고는 말하지 않겠다
-
수1 자작문제 4
간단하지만 몇번 정도의 난이도인지 한번 봐주시면 감사하겠습니다..! 검토를 한다고는...
-
나 결혼해도 될 듯 15
아 요리 너무 잘 하네 ㅋㅋ
-
으으
-
킹누 /일도 요루시카 /카틀레아 콧치노 켄토 /결과 올라잇 이런 신나는 노래 좋아함요 많은추천부탁
-
40점 넘기기 도전
-
중딩여르비 질문해도 되ㄹ까요 ? ♡ཾֻ. ᩙ.?ꛒྀི 18
상위권이 극상위권이 되려면 어떤 걸 해야 할까요 n제들 풀고 실모 보고 ㅎㅏ고 있긴...
-
학평기준 국(언매) 수(확통) 영어 223 떠요
-
Baby 오늘 넌 내 여자 아님 ㅂ
-
내가 생각하는 그건가?
-
공부 안했어서 거의 5뜸 지금 미적분 c단계빼고 쎈 반절이상까지 밖에안함 개념 너무...
-
18 19 20 22 23 24 도표페이지 4문제랑 어법문제(29번)...
-
6모봐야지 계획한 것을 다끝낸다
-
26드릴이고. 현우진이 말하는 22번급 문제들 빼고는 다풀었는데. 이것들을 굳이...
-
대선 현수막 업자들 부랴부랴 현수막 단대요.
-
https://m.blog.naver.com/dave_english/223862314...
-
결과가 좆망해서 그런가 나아질거라는 생각자체가 안듬...
-
기본적으로 수능은 결론만 딱 외우는 애들 걸러내는 시험인듯 21
그 결론까지 도달하는 과정을 정확히 알고있냐를 묻는 시험인것 같음 구조독해,...
-
잇올 업키장학 0
입학 전 장학 말고 입학 후 장학(성적 오르면 주는)은자신이 신청해야 하나요 아님...
-
심찬우쌤 2
디엠하면 봐주시나요?
-
휴릅끝 2
-
커피마실가 7
다시 오지않을 이 밤을 즐겨바?
-
진짜 가슴이 웅장해진다.........
-
약간 여기 레벨 낮은 사람들도 ㄹㅈㄷㄱㅁ 탈릅 오르비언 이런 단어 쓰던데 이런건...
-
유네스코도처음볼껄이런자연미는
-
처음보는 지문이라고 했을 때 평가원이랑 사설이랑 구분 가능하심?? 일반 수험생이 구분 가능함?
-
화작 미적분 경제 생명과학2
-
언니과잠슈킹하기 2
쨔잔
-
김기현 기생집에서 교육청 킬러 문제 푸는데 풀어야 하나 싶을 정도로 퀄리티 별로인...
-
걍 틀릴 생각임 공부해도 못 맞춰 ㅅㅂ
-
당일에 바로 보은하는 방법이 있을까요? 기프티콘도 괜찮나요 내일부터 준고시생이라...
-
수능 이후 실모 제대로 처음 잡아 보네요 70분 좀 넘게 걸렸습니다 분석이나...
-
뻘글에도 댓글 와라락 달리고 맞팔 몇백명이랑 되어있고 모고문풀 칼럼쓰면 추천글...
-
뭐가 낫다봄?
-
21대 대선에 7명 후보 등록…이재명 1번·김문수 2번·이준석 4번 2
전날 6명 이어 국민의힘 김문수 후보 추가 등록 (서울=연합뉴스) 조다운 기자 =...
-
걍 일반학원 ㅇㅇ 안다니는게 좋지않나
-
이 엄동설한에
-
지하철 기다리는데 어떤 외국인 남자분이 you are so beautiful 이래서...
-
취업 생각하면 간호 가야할까 싶은데 배우고 싶은건 건축인데 5년제라 고민됩니다ㅜ...
진짜 공부할수록 진가를 알게하는 조건문..공부
좀 아시는 분이군요 ㅎㅎ
제가 본문에서 제시한 선까지만 공부하시면 수험적으로는 충분할 거예요 :)
마지막 말 공감합니다 ㄹㅇ.. 수험생때 조건문 조금만 보고 더 헷갈리기만 해서 포기하고 대학 와서 다시 공부해보니 보는 눈이 확 트인 느낌..
그래서 제가 수험생 때부터 쉽고 제대로 이해할 수 있도록 강의를 올리고 있습니다. ㅋ
선생님 예외가 있다면 명제가 아닌가요?
예외의 존재와 명제 여부는 무관합니다. 자세히 답변하려면 '명제', '참/거짓' 등에 대해 전반적인 설명이 필요할 것 같은데, 만약 PSAT/LEET를 대비한다면 '논리개념 매뉴얼' 앞부분을 참고해주세요.
아 그냥 취미로 찾아보는데 예외가 있다면 명제가 아니다라는 주장을 봐서요..
혹시 조금 간략하게라도 설명해주실 수 있나욥?
명제는 다양한 분야에서 서로 다른 의미로 쓰입니다. 해당 문장에서는 그냥 원칙 정도로 쓰인 것 같네요. 논리학/철학에서 명제는 (보통) 문장의 내용으로 봅니다. 더 자세한 내용은 제 교재나 분석철학 교과서를 참고해주세요. (수리논리학에서는 또 명제에 대한 정의가 다릅니다.)
감사합니다!!