[수1 자작 문항] 지수로그함수의 그래프
게시글 주소: https://orbi.kr/00062721711
dx/dt=0 조건은 별 거 아니고 x가 t에 대한 함수라고 말할 수 있을 때, 정의역에서 미분계수가 항상 0임을 뜻합니다.
미적분 선택자시면 'x가 t에 대한 음함수로 정의되고 도함수가 0이다'로 받아들이시면 될 듯합니다.
의미는 t가 변할 때 x가 영향을 받지 않는다는 뜻으로 문제 상황에서는 'x와 t가 개별적인 독립 변수다'라고 이해해도 괜찮겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 영어 죽고싶다.... 수학 지구는 마음에 드네요 점수가
-
떠올라서 혼자 웃참 ㅈㄴ함ㅋㅋㅋㅋㅋㅋ
-
덮 더프 생윤 0
앞장 2 3 4 5번 다 틀려서 40점인데 이거 맞나…
-
6점 날림 ㅅㅂ..
-
일단 저는 입시를 두번 치렀는데(쓴웃음) 수학만 말하자면 지금 수능과는 완전...
-
덮 국어 86 0
몇 나오려나? 시발 시계 없어서 10 11 12 13마킹 못했어ㅜㅜㅜㅜㅜㅜ 인생 시발
-
7덮 정법 1번 오류 아닌가요? 5번 선지 답지랑 문제가 다른데….
-
더프 결산 0
언매 89 미적 62 ㅅㅂ 영어 71 물리 1. 43 지구1. 38 수학 걍...
-
7덮 생윤 0
25면 몇 뜰까요..?
-
7덮 0
언미영생지 90 84 2 47 39 점점 멀어지는 꿈의 대학 ㅋㅋ 생명 좀 올랏나...
-
요즘 이게잘안됨 스트레스
-
공통만틀림 1
울고싶다 나의 수학
-
68점 ㅡㅡ 와진짜...
-
언:79 미:77 영:3 생윤:42 사문:44 32332가 정배인가요..? 혹시...
-
수학 1컷 예측 좀요 10
ㅈㄱㄴ
-
뭔 시험마다 점수가 똑같냐
-
이상하다 0
독서 한지문 반타작하고 수학 찍맞 2개 하고 영어는 ㅅㅂ 내가 85라고? 물리 4,...
-
킬캠보다 어려우면 풀기 싫은데(이미 주문했지만)
-
이번에 3432박음 ㅋㅋㅋㅋㅋ 현역 첫 사설인데 원래 이런거임? ㅠㅠ 심지어 사문은...
-
실력이 많이 는듯 특히 독서에서 어려운 지문도 흡수가 되는 느낌임. 사설 1시간...
-
대체로 나이를 애매하게 먹었는데 정신연령은 어린 인간들임 애매하게 먹었다는건 나이가...
-
원래는 수업시간에 칠판 안 보여도 그런갑다 하고 길가다가 간판이나 멀리서 오는 친구...
-
머하는거지
-
영어 기출 풀어봤는데 많이 틀리고 어려운데 수특으로 기본기 다지고 해도될까요?
-
자기 능력 과신하지 말기 스불재에 눌려 압사당하는 중
-
하... 더프 0
수능 ptsd 다 모아놓은 버전같네
-
하 경제 ㅈ댓네 3
3p 풀지말고 4p풀껄
-
난이도가 어땠나요?
-
수학 1번틀림 1
어쩌자는거지 ㅅㅂ
-
한문제 실수한게 아깝긴한데 ㅠ 목표는 수학 3컷이라서
-
7덮 난이도 어땠나요?
-
생윤 0
방학때 생윤 개념(리밋)+현돌끝내고싶은데 어떻게할까요
-
언확정사 8
언 90 확 92 영 93 정법 38 사문 47 하…시발…. 정법 이련을 어떡하지 국어도 기대이하임
-
실검 올라오는거 보니까..
-
운동하러 가면 맨날 보이던 형님들만 계심 내적 친밀감 max
-
언미영사지 82 88 3 50 42 꿈의 대학 냥공 되나요 더프 언매 미적 사문 지구
-
7덮 1
너무망해서 부모님한테 성적 어떻게 말해야될지 모르겠음…. 진짜 진지하게 현타옴...
-
ㄱㄴㄷ은 믿찍5인데
-
출제의도와 동일하게 푸시면 10000XDK을 드립니다. 댓글로 남겨주세요.
-
과외생이 학원을 안다니는데 구할 방법 여쭙니다
-
높2는 뜨나요?
-
이게사?람새?긴지????????
-
예상 ㄱㄱ #더프
-
0.3점차로 전장 짤려버림..
-
15 까다로웠고 (틀림 ㅋ) 13은 어 이건가 하고 확인했는데 맞았음 22는 진짜...
-
ㅈㄱㄴ
-
비록 돈이 없어 경시대회 기하 대비 교재는 지금 당장 못 사지만 도전하고 싶습니다
-
생윤 2
방학때 개념인강+현돌 끝내고싶은데 어떻게할까요 인강은 리밋듣고있어요
어려워요
x와 t는 dx/dt=0 조건에 따라 서로에게 영향을 주지 않습니다. f는 x에 관한 함수임을 생각하면 로그함수 개형 잡아보시면 되고, g는 t에 관한 함수임을 생각하면 이차함수 개형 잡아보시면 됩니다. M, m이 각각 x 혹은 t에 관한 식을 제시될 것인데 이때 x와 t의 범위가 각각 주어졌으므로 M, m값을 결정하실 수 있을 거예요 ㅎㅎ
음함수는 그냥 x랑 연관되어 있어서(x에 따라 변하는 넘) 미분치면 상수처럼 죽이면 안되고 변수로 봐서 dt /dx가 튀어나온다 <- 평생을 여기까지만 알고 살아온 1인 ㅋㅋ
별 거 없이 y=f(x)라고 명백하게(explicit function, 양함수) 이야기해주지 않고 y라고만 있어도 x가 변할 때 변한다면, 즉 영향을 받고 x값 하나에 y값도 하나씩 대응된다면 우리가 함수라고(implicit function, 음함수) 말한다는 거죠. 보통 F(x, y)=0 꼴로 x와 y가 섞인 방정식 형태로 제시되는데... 고등학교 수학에는 음함수임을 기정 사실화 한 채로 dy/dx 표기만 연산할 때 잘 해주면 되지만 실제로는 '이것이 언제 음함수로 정의된다고 확신할 수 있는가?'를 조사하는 음함수 정리(implicit function theorem) 같은 것도 존재하죠!
이를 바탕으로 생각해볼 때 본문의 문제 상황에서 x와 t가 서로 영향을 주고받지 않은 독립변수다... 다시 말해 종속변수 y에 대해 y=(대충 본문에 주어진 함수식)라는 함수는 2변수함수이지만 f와 g가 각각 x와 t에 대한 함수라고 명시했으므로 f 입장에서는 t가 상수, g 입장에서는 x가 상수임을 활용하기 위한 조건으로서 dt/dx=0을 제시할 수 있다고 생각했습니다.
서로 영향을 주지 않는 독립변수라는 말은 x가 변해도 t는 그대로고 t가 변해도 x는 그대로라는 의미이니, 어떻게 보면 서로가 서로에 대한 상수함수라는 의미잖아요? 그럼 상수함수는 미분하면 도함수가 0이니까 dx/dt=0 조건을 통해 '아 x랑 t가 같이 있어서 2변수함수면 수능 출제 범위가 될 수 없지 않나 싶었지만 dx/dt=0이면 서로에게 상수함수이니, 즉 서로 영향을 주고 받지 않으니 f는 x만 변수로 g는 t만 변수로 취급하면 되겠구나'라는 생각을 하는 것이 출제 의도였습니다 ㅎㅎ
물론 이거 하나 해석 하느라 문제를 못 푸는 것은 지수로그함수 그래프 개형을 통한 닫힌 구간에서의 최대 최소 조사에 방해를 준다 느껴 바로 설명을 덧붙였지만요