[수2 자작 문항] 다항함수 비율 관계, 정적분으로 정의된 함수 (ft. dummy variable), 절댓값 함수의 미분가능성
게시글 주소: https://orbi.kr/00062721637
우리가 비율 관계라 공부하는 것 자체는 미적분학의 기본 정리 (FTC, the fundamental theorem of calculus)에 근거를 두고 있습니다.
f의 부정적분 F에 대해, F(b)-F(a)와 f를 닫힌 구간 [a, b]에서 적분한 값이 일치한다는 것이죠.
비율 관계는 대부분 F(b)=F(a)일 때 b-a에 대해 f의 정보를 정리하는 것과 같겠습니다.
p.s. 고등학교 때 한 친구가 '학교에서는 다항함수의 비율관계 같은 중요한 것은 정작 가르쳐주지 않는다.'라고 해서 '어차피 도함수의 넓이가 원함수의 변화량과 같음을 이용할 뿐이다, 학교에서 배운 셈이다.'라고 말해줬던 기억이 나네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
딴과목 투자하느라 국어 많이 투자는 못할거같아요 작수 언매 3틀 3컷이였습니다...
-
반갑습니다 8
-
사탐은 중반까지 개념기출에 시간 많이 쏟고 탄탄히 해놓으면 9모 이후 후반부에 손...
-
아오
-
기균 차상위 1
일반 한부모는 대학 미취학시 성인되고 끊겨서 쌩재수시 기균 사용못하는거로 아는데...
-
ㅈㄱㄴ
-
적당히 분위기 봐가면서 드립치고 해야지 걍 선이 없음 지때문에 싸해지는지도 모르고...
-
못 보고 자는거임?
-
마신건 아닌데 궁금
-
칮앗다 6
9
-
걍 로피탈 세번 때리면 끝나는거 아닌가
-
임정환쌤이 1타같긴하던데 윤성훈쌤이 더 실수픽 같은 느낌이던데
-
도와주셈 0
확통 과탐 되는 공대 어디임
-
기차지나간당 1
부지런행
-
국영수사탐1 사탐2 모두 3등급 중반이면 대략 어디쯤 가나요?
-
대선결과를 못보고 자라고?
-
고난도 문학 2
평가원 고난도 문학만 모아져있는 책이 있나요? 나기출이 2017년까지밖에...
-
1.문제를 스스로 못 풀어 강의를 듣고 푸는데 강의를 들으면 이해가 가요. 그런데...
-
미친기분 후에 기출 더 풀어보고 n제 풀어야할까요? 1
이미지쌤 미친기분 시작/심화 둘다풀고나서 기출 한완기로 한번더돌리고나서부터 n제...
-
너무외롭다 1
벚꽃이 너무 예뻐
-
아이디어 7
작년에 아이디어 들엇는데 잘모르겟읆..친절한 누렁이라는데 그것도 잘모르겟음뇨 그래도...
-
고수는 준비안했을때 나오면 내가 큰일날걸 준비한다고 생각함
-
원제목은 "sinx 테일러급수 3차항까지 교과내로 보이고 싶어서" 였다 근데...
-
커피 한잔 먹고 다시 정신차리고 집중모드 ㄱㄱ 안녕하세요! 여러분은 요즘...
-
허경영 허경영 허경영
-
일본가야지 8
연가내고 갈수잇나 다카마쓰가고싶은데
-
뭔가가 잘못됐다 10
염병
-
젖지대머리
-
말 잘못해서 벌집 건드리고 메인까지 가서 개싸움 일어나는게 생각보다 흔한데 그...
-
바로 2박3일 예매 완료
-
아이디어 뉴런 4
김기현 아이디어 듣고 6월쯤에 뉴런 들어도 늦지 않을까요?
-
김치쏟앗다 9
진자 절망적이야 신발은 또 언제빨지ㅋㅋㅋ
-
그냥 올해 대학 못가도 불행하고 멍청하다는 생각은 접었음 10
그것도 나고 능력이 안되는 나도 나니깐 그니깐 뻘글 그만쓰고 공부하러갈게
-
보통 어떤게 더 어려울까요 ? 국어 2등급 vs 과탐 3등급 이내 (대신, 과탐은...
-
줄줄이 탈릅 5
-
하고 매일 집앞에서 무릎꿇고 있으면 잡혀가나요
-
전 한의대 지망이라 ㅇㅇ
-
피곤하다하면 조퇴시켜주낭 조퇴한다는건아님뇨
-
정상화 끝날듯ㅋ
-
젖지대머리.
-
맛점해요 0
말할 곳이 없네요 이젠 맛있는 점심드세요
-
루트야 그만나와 11
저리꺼져
-
알몸으로 돌아다니는 중 12
사람들이 동물원에서 탈출한 동물마냥 쳐다보는게 설레노
-
22구거 현장응시하신분 17
제일 멘탈 털렸던 비문학 지문이 뭐였음
-
6평 목표는 2
국수영1등급 탐구는 버린다
-
이차곡선 2
말썽쟁이..
훨씬 깔끔하네요!! 한글 쓰신다 하셨나요?
네!
273?
f(4), g(4) 잘 구하신 것 같은데 둘의 부호가 같지 않나요?

양수 a네용f=12x^3-36x^2
g=3x^4-12x^3+81
답 111(192-81)
f(x)=12x^2(x-3) f(4)=192
g(4)=81 |g(4)-f(4)|=111
근데 가나다 조건이 너무 간단해서 조금 아쉽네요
111, 정답!
맞아요, 집합의 의미를 아는지와 절댓값 함수의 미분가능성을 논리적으로 설명할 수 있는지만 세 조건에 담겨있고 적분할 때 f(x)dx나 f(t)dt나 f(p)dp나 상관 없음과 연속함수를 적분한 함수는 미분가능함을 통해 극한을 처리해주면 전형적인 '정적분으로 정의된 함수' 상황이기 때문에 객관적인 난이도는 낮은 편입니다.
제가 어려워보이는 쉬운 문항 만들기는 종종 하는데 어려운 문항 만들기는 잘 못해서.. 조건 채우기가 쉽지 않네요 ㅋㅋㅋㅋ 풀어주셔서 감사드립니다
조건 이용해서 f(x)의 개형 알아낸 다음에 g(0)=0이용해서 a=3 나오고 a가 나왔으니 f(4)=192 . g(4)=F(4)-F(3) 계산해서 81 나오고 ㅣ81-192ㅣ=111 이렇게 나왔는데... 의도하신대로 푼 건지는 모르겠습니다.
맞는 듯합니다! 세 조건 활용해 f 개형 확정짓고 g(0)값에서 a 결정. 마지막에 g(4) 값 구할 때 직접 정적분 계산하는 대신 다항함수 비율 관계 이용해 g(4)=g(0)=81임을 확인하면 조금 더 빠르게 답 내실 수 있어요, f(4)는 그냥 계산이었습니다. 감사합니다
비율관계 관련해서 공부를 더 해봐야겠네요.. 감사합니다. 혹시 관련 칼럼같은거 쓰셨나요?
대중적인 내용이기도 하고 '도함수 정적분값은 원함수 변화량'이라는 기본적인 내용에 뿌리를 두고 있기 때문에 따로 글을 쓴 적은 없습니다. 다만 관련해서 학습에 도움 받으실 수 있을 만한 영상 하나 공유해드려요
https://youtu.be/Fil7aJQ1g-g
감사합니다.
맞은 줄 알았는데 틀렸네… 왜 틀렸지?