우함수, 기함수 적분 성질 증명
게시글 주소: https://orbi.kr/00062656022
우함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 y축 대칭임을 확인하실 수 있을 것입니다.
기함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 원점 대칭임을 확인하실 수 있을 것입니다.
대칭성은 그래프 개형을 파악하거나 계산을 할 때 직접 해결해야할 양을 줄여주기 때문에 무언가를 할 때 항상 먼저 떠올리시면 도움이 될 확률이 크다고 말할 수 있겠습니다. 또한 꼭 함수에 관한 이야기를 하지 않더라도 확률과 통계 문항을 풀 때 경우의 수를 쉽게 구하려면 대칭성을 고려하는 것은 핵심적인 사고과정이라 말할 수 있겠습니다, 사실 합의 법칙과 곱의 법칙도 수형도의 뒷부분이 같냐 다르냐를 구별하는 것이기에 대칭성에 대해 잘 이해하고 있는지를 묻고 있다고도 생각해볼 수 있겠죠!
우리는 수학2에서 다음과 같은 성질을 공부합니다.
즉, 우함수면 x=0에 대칭인 구간을 잡아 적분하면 그것은 절반만 해서 2배한 값과 같고 기함수면 적분값이 0이라는 것이죠.
대충 y=x^6이나 y=x^7 정도 생각해보면 직관적으로 성립할 것임을 알 수 있습니다.
혹은 미적분의 기본 정리를 통해 직접 계산해보아도 증명할 수 있겠죠.
참고로 미적분의 기본 정리란 다음을 의미하며, 정적분의 정의는 미적분에서 구분구적법을 학습해야 엄밀하게 보일 수 있기 때문에 (물론 이 또한 극한을 이용한 것이라 정말 엄밀하게는함수의 극한을 제대로 정의하는 방법인 입실론-델타 논법을 공부해야하겠지만요) 저는 수학2에서 소개하는 정적분의 정의를 '미적분의 기본 정리 (the fundamental theorem of calculus)'라고 부릅니다.
자 그럼 우함수일 때부터 위의 적분식을 증명해봅시다. 우선 대칭성을 활용하기 위해 구간을 끊어주고
이제 f(-x)=f(x)를 활용해봅시다
미적분에서 학습할 수 있는 치환적분법으로 다음의 치환을 해주면
적분식은 아래와 같이 변하겠습니다.
자 이때 우리가 y와 dy에 y는 더미 변수 (dummy variable), 다시 말해 최종값에는 등장하지 않고 y 대신 아무거나 써도 상관없음을 알고 있으므로
뭐로 잡든 상관이 없을 것입니다. 그럼 편의상 x로 잡아봅시다. 이제 원래 적분식에 집어넣으면
임을 보일 수 있겠습니다. 우함수일 때 증명 끝! 이제 기함수일 때를 봅시다.
마찬가지로 대칭성을 활용하기 위해 구간을 나눠주고 대칭성을 활용해줍시다.
마찬가지로 -x=y로의 치환적분을 해주면 증명 끝입니다.
따라서 우리는 치환적분법을 활용해 우함수와 기함수를 적분할 때 적분 구간이 x=0에 대칭이면(?) 각 값이 특수하게 결정됨을 확인했습니다. 물론 닫힌 구간 [-a, a] 꼴에서 적분한다고 무조건 '오! 기함수 아님 우함수겠다'라고 생각할 수 있는 것은 아니지만 대부분의 경우 그렇게 먼저 의심했을 때 계산량이 확 줄어들더라구요 ㅎㅎ (특히 평가원, 수능에서)
학습에 도움이 되었으면 좋겠습니다!
p.s. 참고로 제가 오르비에 공유하거나 남기는 자료는 제 과외 목적 등으로 활용하기 때문에 글을 보시는 분들도 모두 무단 이용하셔도 상관 없습니다. 뭐 애초에 공개적인 웹에 내가 무언가를 남긴다는 것 자체가 누구든 확인할 수 있으니 사용해도 할 말 없다는 뜻이기도 하지만 말이에요 (법적으로 문제가 되더라도 본인이 공개한 이상... 몰래 쓰여도 할 말 없으니)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요 4
오르비는 처음이네요
-
지1 질문 2
겉보기등급 = 지구에서 봤을 때 별의 밝기 절대등급 = 별이 지구로부터 10pc...
-
수학이 싫어짐 0
허허
-
제발제발로 문학 강사or 강의or독학서 추천 부탁드려요 4
주 수업내용이 문학개념어, 자세한 작품해석 후 선지 그냥 쭉 읽고 그럼 답은...
-
확통공부법 3
5모때 28.29.30 못풀고 60점 떴는데 6모까지 기출생각집 지금시작해서...
-
어떡하나요?
-
노베 국어 커리 0
작수 화작 백분위 85로 3등급 떴었고 올해 목표는 높2정도 뜨는거입니다...
-
그 관심없는 여자마저도 고백당할까봐 무서워서 웃어주는 걸 모름 지가 매력 넘치는 줄...
-
나만 안 들어왔나 이준석 한덕수 중앙대 화작 한의 사탐런
-
한완수 어떰 5
공통 하편만 해보려는데 불량 얼마나 됨?
-
현재 가지고 있는것들 이매진 강e분 새기분(끝냄) 기출 복습하면거 ebs 조져?
-
감히 이모지를 검열해?
-
S = 평속 x t 구간 전 속도를 매우 빠르게 구할 수 있음 변수 단순화는 역에보...
-
김문수, 국민의힘 중앙당사 ‘점거’ 돌입···“내가 대통령 후보다” 10
국민의힘 김문수 후보가 후보교체를 강행한 당 지도부에 대한 정면대응 입장을 밝히고...
-
기상청 "경기 연천 북북동쪽서 규모 3.3 지진 발생" 1
(서울=연합뉴스) 10일 오후 1시 19분 0초 경기 연천군 북북동쪽 5km...
-
??수능 ? ㅌ I비 ㅗㅜㅑ? Su능 보고 갈ㄹ ㅐ??...
-
주시면 사랑을 드릴게요
-
소심(소신X)발언: 5모 22번, ❗️역추적하지마십시오❗️ 7
본 칼럼은 미카네님이 작성하신 칼럼입니다 5모 22번, ❗️역추적하지마십시오❗️...
-
택시 기사아저씨랑 27
저랑 이름이 정확히 똑같아요 성이랑 이름이랑 다..
-
비와서 스카 어캐가냐,,, 하다가 생각해보니까 내가 왜 꼭 공부를 스카에서만...
-
물론 유튜브나 농구하면서 일상에 변주를 주고 있긴 한데, 매일 공부하다 보니...
-
뒤지게 좋군 6
무너지는 음향 위로 내려앉는 천사의 목소리
-
안녕하세요. 한방국어 조은우입니다....
-
여자가 한번 웃어주고 두번 대화하면 그게 썸이라고 생각함 눈에 초록색 샐로판지...
-
5모 질문 1
5모 언매 97(1) 미적분 100(1) 영어 87(2) 화2 50(1) 생1 50...
-
무물보 받슴 12
그렇슴
-
공유하실 분 있나요
-
자기는 착한 남자인 줄 앎 ㄹㅇ ㅋㅋㅋㅋ 남자들이 말하는 “여자들이 좋아하는 나쁜...
-
무물 3
무우
-
대재명 형님 지옥에서 살아돌아온 남자다 혼자서 전라도 민주당 다 먹어버리고...
-
보통 빡공하시죠? ㅠㅠ 그리고 보통 반수생들은 몇월부터 많이 공부하나요 주변에...
-
4수해서 그런가 1
예전엔 수학할 때, 숏컷풀이 같은거 생각하려고 시간을 썼는데 요즘은 걍 머리 쓰기...
-
뭐하나요? 진짜 마닳이나 사서 기출공부나 할까
-
아 오타 8
오타가 아니라면 흐흐
-
본인 중딩 때 수포자로 살다가 16살 때 처음으로 미지수랑 방정식 이항 일차방정식...
-
비까지 오네 생각보다 책이 엄청많네..
-
작수 15번 생각나서 04 48 인거 바로 잡고 비율관계 써서 함수 1분컷 했는데...
-
다들 공부 화이팅
-
또 병크 터짐 0
덕코라고 생각하고 썼는데 정신차려보니까 레어라고 썼었네
-
6시까지 유종의 미를 거두고 오자
-
돈 내면 식권받을수 있음? 아빠회사 동료인가 후배직원인가 결혼한다던데 아빠는 바빠서...
-
그대가
-
ㅇ
-
불편
-
3시30분까지 한과목만 하려고함 수학 제외 국어 영어 사문
-
ㄱㅁ하나할게 10
-
https://orbi.kr/00073082844 언매 39번을 보시면 알겠지만...
-
병신과 머저리 3
-
예
첫번째 댓글의 주인공이 되어보세요.