[수1] 스튜어트정리를 아시나요? (+tmi)
게시글 주소: https://orbi.kr/00062602202
알 사람은 다 안다는 바로 그 정리!
바로 스튜어트 정리에 대해 이야기해 보려고 해요!
되게 괴상하게 생겼죠? 이 괴상한 공식이 바로 스튜어트 정리입니다!
보통 d 길이를 구하는 데 많이 이용되는 것 같아요!
수1에서 나름 쓸만한 공식이에요!
질문조교 알바하면서 학생들한테 꼭 외우라고 말했던 공식이기도 하고요!
저희한테 필요한건 증명보다는 쓰이는 상황이니...
쓰이는 상황에 대해 이야기해 볼게요!
첫 번째로,
인 상황!
이때 을 주어진 식에 대입하면 중선정리가 나온답니다!
중선정리를 사용해야 하는 상황에 쓸 수 있겠죠?
가끔 중선정리 까먹은 친구들이 있는데, 꼭 외워두도록 해요! 이왕이면 스튜어트정리 외우고 m=n인 상황으로 외우는 거 추천드려요!
두 번째로,
인 상황!
사실 이 상황은 각이등분선의 특징을 이용할 수 있는 상황이죠?
근데 각이등분선의 특징을 이용하는 것보다 스튜어트 정리를 이용하는게 더 간단할 수도 있어요!
d의 길이를 구하는 과정을 보여드려볼게요!
이런 문제가 주어졌다고 칩시다!
정석적인 풀이는,
이런 식으로 cos 법칙을 쓰는 풀이겠죠?
혹은 삼각형의 넓이를 이용하는 방법도 있을 거에요!
이 상황에서 만약 스튜어트 정리를 사용한다면, 이렇게 해서 구할 수가 있어요!
막 간단해지지는 않았지만, 그래도 식 쓰기 간단해졌죠?
수능에 나오는 삼각함수 문제라면, 당연히 스튜어트 정리를 안 써도 풀리게 출제해놨을 거에요!
그렇지만 스튜어트 정리를 쓸 경우 복잡한 과정을 줄일 수 있는 경우가 많기 떄문에 외워두는 걸 추천해요!
문제가 복잡해지면 복잡해질수록 cos 법칙을 적용하기도 귀찮아지거든요!
그리고 삼각형 길이에 미지수가 많이 포함되어있을 경우, cos 법칙보다는 스튜어트정리로 표현하는게 정리하기 쉬워 보이기도 하고요!
사실 스튜어트정리 자체가 cos법칙으로 유도하는 거긴 해서... cos 법칙으로 대부분의 문제는 풀리겠지만, 이왕이면 외워서 간단한 길로 가자는거죠!
솔직히 말해서 평가원 시험보다는 사설 모의고사에서 스튜어트 정리를 쓰는 일이 되게 많이 발생할 거에요!
그래도 외워둘만한 가치가 있는 공식이라 생각해 소개했습니다!
스튜어트 정리만 사용해서 풀리는 문제는 9번-11번 난도라 생각해요. 애초에 스튜어트 정리만 사용해 풀리는 수능 문제는 중선정리나 각이등분선 정리로 끝난다는 이야기니까!
하지만 13-15번 삼각함수 준킬러 문제는, 풀이의 흐름이 길어지며 최대한 과정을 줄이며 풀어야 하는 문제들이기 때문에, 푸는 과정에 스튜어트 정리를 이용한다면 시간도 살짝 줄일 수 있고 머리도 안 꼬일 수 있을 거에요! 그래서 외우는걸 추천드리는 겁니다!
그리고 일반화된 상황을 외워놓으면 괴상한 곳에 사용할 수도 있잖아요? ㅋㅋ
여기서부터는 제 tmi를 이야기해볼게요.
사실 전 수학에서 외울 수 있는 공식은 다 외우고, 쓸만한 교과외는 다 공부해두자라고 생각했던 사람이에요.
공식을 외우는 이유는, 최대한 시간을 줄이기 위해서였어요!
저같은 경우는 23학년도 6평에서 21, 29를 틀리고 9평에서 14를 틀렸었는데, 사실 검토할 시간만 있다면 안 틀릴수도 있었던 문제였기 때문에 최대한 '시간을 남기고 검토'하는 쪽으로 수능 계획을 세웠었습니다..
(물론 검토했으면 안 틀렸다 이런건 다 핑계라 생각합니다. 6월과 9월의 저는 실력이 부족했던 거였죠.)
그래서 시험 시간 내에 모든 문제를 검토하기 위해서는, 최대한 풀이와 계산을 줄여야 한다는 생각을 했었고, 그걸 위해 많은 공식을 외웠었습니다.
오늘 소개해드린 스튜어트 정리도 제가 작년에 외웠던 공식들 중 하나에요!
앞으로 제가 외웠던 공식같은 거 더 이야기해 보려고요!
음 여기까지 이야기하면 '공식을 외우는 것'은 무조건 좋은 것이라고 생각할 수도 있어요.
그런데 공식을 외우는 것에 단점도 있답니다. ㅠㅠ
바로 문제 상황을 관찰하기보다 공식에만 의존하게 되는 것!
암기를 꺼리는 많은 선생님들이 이것때문에 암기를 싫어하시는 경우가 많더라고요.
전 이 문제를 해결하기 위해서, 제 풀이와 저보다 뛰어난 사람의 풀이를 보며 비교하며 공부했어요.
여기서 저보다 뛰어난 사람은, 학원을 다닌다면 학원 선생님, 인강을 듣는다면 인강 선생님, 오르비에 적힌 신빙성있어 보이는 글 등을 의미한답니다. (전 신빙성 있어 보이나요ㅠ)
저보다 뛰어난 사람의 풀이를 보면, 제가 공식에 집착하느라 놓친 전체적인 상황 흐름을 파악할 수 있었거든요.
이 방법을 통해 시간이 지날수록, 공식은 수단으로만 사용하고 상황을 파악하는 능력도 키울 수 있었던 것 같아요!
이건 수1 수2 미적 모든 공식에 관련된 이야기랍니다! :)
한 번 tmi를 방출하고 싶어서 막 적어봤어요!
처음으로 수학 관련 글 써보는 거라, 간단한 주제로 시작해봤어요!
점점 발전하는 사람이 되어보도록 할게요!
솔직히 저 수2에 더 강하고 수2 사랑하는 사람이라, 언젠가 수2 이야기도 풀어보고 싶네요!
읽어주셔서 감사합니다!
앞으로도 잘 부탁드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 하고있는 정병호T 원솔멀텍(기출) 끝나고 추가 기출 회독할때 김범준쌤 강의...
-
국어 못하면 0
생윤 안하는게 낫겠죠? 생윤에서 국어적인 능력이 얼마나 중요할까요?
-
사랑합니다 6
당신을 좋아해요
-
다 읽을 자신이 없어... 2부 보다 끊음
-
솔직히 재밌게 딱 볼 수 있는 건 500화 이하인 듯 3
너무 길면 지침
-
근데많이외롭긴함 0
ㄹㅇ..
-
5모 국어 총평 4
솔직히 비문학 지문은 쉽지 않았는데 문제가 너무 쉬웠음,,,
-
더 길어지면 정주행하기도 힘들고 귀찮음 예외 케이스가 전독시 괴담동(진행중) 데못죽...
-
아무것도 모르고 날것의 상태로 본 시험 수학 어케 저성적 받았는지 모르겠음 저...
-
아직 안했는데 ㅠㅜ
-
이런 게 무협 물론 난 웹소설 세대이지만, 그 당시 소설이 훨씬 나은 듯. 근데...
-
탈르비 6
수능 끝나면 현생이 너무 꿀잼이라 오르비 잘 들어오지도 않는데 반수 시작하고 너무...
-
자기가 파본검사 해달라고 말 못하는 성격이면 실모풀때 파본검사 없이 푸는 연습 좀...
-
맞팔구 7
-
아무 질문 받아본다 14
저도 이거 해보고 싶었어요(...) 늙었음 어릴적에 하려던 공부들 못했는데 더 늙기...
-
이거도 나쁘지 않앗는데
-
댓 ㄱㄱ
-
제발 관심가져줘 공통 현우진쌤 커리타는데 n제 드릴만 풀까요? 관심가져줘 7
뉴분감 충분히 회독돌렸는데 여러 강사분들 n제 말고 걍 드릴 시리즈 다 푸는거...
-
사문도표글보고 0
순간윤성훈쌤이아니라 윤성환으로이름착각했음.. 수능판에서멀어지긴했구나
-
이걸 꼈을때 오르비든 현생이든 그리 좋은 일이 많지는 않았던거 같음 물론 내가...
-
임정환 도표 듣고 있는데 실전에서 적용이 어렵고 내용도 받으들이기 어려워서 다른분...
-
3대성 캬캬 원시림 4억 딱대
-
Xx학과 충원합격하셨어요 네↑에 이랬었는데
-
내가요즘하는게임,,, 12
구레 3장까지 밈 구레 4장 미는중 근데 아무도 내가 뭐라하는지 모를거 같애
-
세나 이번달 15일에 복귀함 하셈
-
11년(일판은 13년) 된 모바일 겜
-
그건 뭐냐면 처음 몇 선지는 적절한 것을 찾으면서 읽다가 후반부 몇 선지는 적절치...
-
웹소설 적정 분량은 2000화다.
-
겨울방학에 강민철 커리 따라가다가 중간에 수학에 완전히 투자하느라 강기분 잠시...
-
3합 3전추 안정지원따윈 없다
-
나도 떠밀려갈듯
-
죽어가는 무협을 살려줘
-
뻘줌하네 0
-
생각해보니 전추해본적은 없구나 원서를 6장이나 썼는데
-
학교측: 혹시 다른학교 기다리고있거나 뭐 그런곳 있으세요? 나: 아 없어요 여기 기다리고 있었어요
-
아 취했dㅏ 2
취요비
-
안녕하세요 team AXIOM입니다 오늘은 댓글에서 어떤분이 요청해주셨던...
-
가장 좋았던 것 같은 생각이 든다
-
형 빨리 자고싶다 좀 한번에 알아먹어라
-
정화 쓰긴 함
-
찾았다 ㅅㅂ 3
근데 내가 과민반응하는걸지도
-
셀프 저격합니다 죄송합니다
-
어떤가요??
-
5모 결과 인증 11
그냥 교육청일뿐이고 재수생도 안들어왔지만 생각했던 것만큼은 아니라서 기분은 좋네요...
-
저 0개국어입니다 11
때려주세요
-
국어는 공부 조금씩만 해도 아직까지 뭐가 더 보이는데 1
수학은 다 갈아넣어도 진전이 거의 없네..
명박이 나이가 너무많아 다이 ㅋㅋ

악 저도 암기방법으로 그거 봤었어요...올려야 하나 고민했는데...
논란 없이..오래오래..오르비하고 싶어서..차마 못 올렸습니다.
이제 이 댓글을 보신 분들은 암기 방법을 알게 되겠네요! ㅋㅋ

이거 옛날에 어렴풋이 배웠어서 못쓰고 있었는데 좋네요 ㅎㅎ 이런칼럼 아주 좋습니다!
히히 감사합니다사실 몰라도 코사인 법칙 두번 노가다 하면 나오는ㅠㅠ

그렇긴 합니다! 그래도 외워두어 나쁠 건 없는 공식이라 생각해 소개해 봤어요!코싸인두번쓰기귀찮아서외워버린
굿굿