도형 문제에서 삼각함수의 극한 근사 (ft. 22 6월 분석)
게시글 주소: https://orbi.kr/00062556894
21 수학 6평 (미적) (ft. 개념 정리).pdf
*뒷 부분 문제 풀이에 2022학년도 6월 미적분 28번을 활용했습니다. 그리고 이전 글에서 '기출 분석 얼마나 해야되냐'라고 물어봐주신 분이 계셔서 제가 고등학교 3학년 때 6모 끝나고 그 다음 날 정리했던 파일을 공유합니다. 이 정도 분석하면 '1회독은 했다'라고 말할 수 있으리라 생각합니다! 학습에 참고하시면 좋겠습니다.
삼도극 근사는 크게 두 종류가 있습니다.
1. 식을 작성하기 전에 상황부터 근사해서 생각하는 것
2. 식을 작성한 후에 식을 근사해서 정리하는 것
저는 1번은 피하고 2번을 추구하는 타입입니다. 이유는 1번을 잘못 생각하다가 망하기 쉽다고 느꼈기 때문입니다. 반면 2번은 논리적인 과정을 통해 증명 가능하기 때문에 훈련 후 적극적으로 사용하길 권합니다. 저도 22 6모에서 처음 평가원 삼도극 문항을 현장에서 접했을 때 '하...' 하다가 극악의 근사 치기로 답 잘 냈던 기억이 있거든요 ㅎㅎ
그래서 이번 시간에는 '2. 식을 작성한 후에 식을 근사해서 정리하는 것'을 소개하겠습니다. 물론 이거 특별한 거 아니고 유튜브든 오르비든 구글이든 어디든 검색하면 나오긴 하는데 저도 종종 설명할 일이 있을테니.. 제 방식대로 가볍게 남겨둘게요.
물론 교과서적으로 lim 분배해 극한을 구하실 수 있을 때 이런 수능 개념들을 공부하기 시작해야합니다.
정석대로 풀지도 못하면서 이런 스킬만 익히면 실력 안 늘어요. (당연한 말)
우선 근사에 대한 이해를 하려면 '삼각함수를 특정 구간을 잡으면 다항함수로 표현해도 괜찮다'라는 것을 알아야합니다. 이것은 '테일러 급수'라는 것을 알아야 우리가 표현할 수 있는데요, 테일러 급수는 테일러 정리를 통해 정의하고 테일러 정리는 평균값 정리의 일반화된 상황입니다.
<평균값 정리 (Mean Value Theorem)>
닫힌 구간 [a, b]에서 연속이고 열린 구간 (a, b)에서 미분가능한 함수 f(x)는 위를 만족합니다. 이때 저 E를 뒤집어놓은 듯한 기호는 'exists'로서 존재한다는 뜻이고 's.t.'는 such that으로 '다음을 만족하는' 정도입니다. 정리해보면 '조건을 만족할 때, 두 끝 점의 평균변화율과 같은 값의 순간변화율을 가질 때가 존재한다' 정도겠네요.
이는 아래와 같이 작성해볼 수 있습니다.
그리고 기하, 확률과 통계 선택자 분들을 위해 이계도함수와 n계도함수에 대해 살펴봅시다. 먼저 도함수의 정의는 다음과 같습니다.
그리고 이계도함수의 정의는 다음과 같습니다.
뭐 이거 이렇게 표현해도 문제 없긴 하겠죠
아무튼 같은 방식으로 3계도함수는 이럴 것이고
그럼 n계도함수는 이럴 것을 알 수 있죠!
자 이제 넘어가봅시다.
<테일러 정리 (Taylor's Theorem)>
닫힌 구간 [a, b]에서 연속인 함수 f(x)와 f^(n)(x)에 대해 열린 구간 (a, b)에서 함수 f^(n+1)(x)가 정의되면 이렇게 쭉 가서...
닫힌 구간 [a, b]에서 함수 f(x)와 f^(n)(x) (f(x)의 n계도함수, n번 미분한 함수) 가 연속이고 f^(n+1)(x)가 열린 구간 (a, b)에서 정의될 때 위가 성립합니다.
초반부를 다음과 같이 이해해본다면
n=0일 때가 우리가 수학2에서 공부했던 평균값 정리임을 확인할 수 있습니다.
단순히 표현해보면 다음이 되겠습니다.
여기서 우리가 상수 b를 독립변수 x로 바꾸어주면 다음과 같은 형태가 될 것이고요
이제 아래와 같이 함수를 잡았을 때
만약 다음이 성립한다면
n->inf일 때 우리가 f(x)를 이렇게 작성해볼 수 있겠죠
즉, 우리는 테일러 정리 조건을 만족하는 함수 f(x)에 대해 n->inf일 때 R_n(x)->0이라면 다음을 얻을 수 있습니다.
그리고 우리는 이것을 x=a를 중심으로 한 테일러 급수라고 할 거예요! (대충 x=a 근처에서는 좌변의 함수를 우변의 다항함수로 근사할 수 있다 정도로 받아들이시면 충분할 것 같습니다)
상황을 만족하는 대표적인 함수 몇 가지를 가져와 적당한 a값을 잡아보면 이제 이러합니다.
자 수고하셨습니다! 이제 우리가 삼도극에서 자주 볼 sin(x), 1-cos(x), tan(x)에 대해 생각해봅시다. sin(x)에 대한 x=0을 중심으로 한 테일러 급수를 전개해보면
sin은 이렇게 될 것이고 cos은 x=0을 중심으로 테일러 전개 해보면 다음과 같으니까
1-cos은 이렇게 되겠네요!
tan는 규칙성이 조금 특이해서 일단 다음과 같이 된다 정도만 확인해두시면 되겠습니다.
그럼 이제 문제를 풀어볼까요?
테일러 급수 통해 분자를 다항함수로 잡아준 다음에 분모 분자를 x로 나눠주면 lim 분배 가능하겠죠?
이때 우리가 x->inf면 최고차항 계수를 비교하듯 앞으로 x->0이면 최저차항 계수를 비교할 생각을 하자고 합시다.
같은 방식으로 이게 성립함도 확인할 수 있고
이게 성립함도 확인할 수 있습니다.
보통은 우리가 아래의 sin(x)~x, 1-cos(x)~x^2/2, tan(x)~x로만 근사를 배워
극한을 처리하는데 이렇게 되면 다음과 같은 상황에서 문제가 생깁니다.
이처럼 최저차항이 날아갈 때는 x->inf 일 때 입장에서는 최고차항이 날아가는 셈이기 때문에 단순히 x-x=0으로 생각하면 안됩니다. 다시 말해 이는 부정형 감성이기 때문에 직접 계산을 해주어야 하고 교과서대로 식 조작 후 근사하면 이렇게 해결 가능합니다.
혹은 테일러 급수 때리면 이렇게도 됩니다.
이제 정리해주면 다음과 같이 1/2을 얻을 수 있습니다.
추가로 만약 다음과 같이 주어졌어도 테일러 급수 활용해 간단히 해결해볼 수 있겟죠!
자 여기까지면 끝! 근데 평균값 정리의 확장으로 테일러 정리를 알고 얘를 n->inf 했을 때 마지막 항이 0으로 수렴하면 테일러 급수로 함수를 표현할 수 있는데 이걸 뭐 어떻게 뭐... 너무 길죠? 그래서 그냥 다음 결과만 기억하면 되고, 최저차항 날아갈 때만 조심하자고 생각하면 됩니다.
자 그럼 문제 하나 풀어보고 끝낼게요. 제가 처음에 언급해던 2022학년도 6월 미적분 28번을 봐봅시다!
도형 해석은 각자 해보시고.. 제가 현장에서 얻었던 식은 다음과 같고 간단히 근사해볼게요
이렇게 해서 저는 각의 이등분선 성질을 써서
이거랑
이거 구했습니다. (이때 점 S 직선 AP와 직선 BQ의 교점이며 오르비 수식편집기에서 선분 표시 어떻게 하는지 모르겠어서 그냥 대충 적었습니다. 아시는 분 있으면 댓글 좀)
자 아무튼 오늘의 결론!
최저차항이 날아가지 않으면 삼도극에서 근사 열심히 해보자
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 컨텐츠 추천 23
1달 기준 자료양입니다 자료는 따로 더 있어서 둘 중에 1개만 골라주세요 이감 vs...
-
6모 접수하고나서 독재학원 옮기면 안되는건가요..??
-
다음 대통령 걍 0
김종인 뽑혀서 한국 바이든 하면 안되냐?
-
VIX 급상승 1
-
지금 수분감 수1 step1까지고다했는데 수2는 늦게 시작해서 미분 반 정도까지...
-
여 반갑고 8
나 낼 독재안가서 늦게잘예정 뭐하면서 쉬지 게임이나 할까
-
하..
-
ㄷㅋㅈㄱㄱ 2
-
작년에 엄청 언급 많았어서 지금 풀고있는데 퀄좋은거 같아서 하루에 데이4씩 푸는중...
-
답해준다면 남은 덕코를 모두 주게따
-
재수학원 옮기여고 하는데 이미 6모 접수 학원에서 핬어요 학교나 러셀에서 보고싶은데...
-
25사문은 사탐런있었는데 둘다 1컷 45이고 심지어 나는 24가 더 어렵다고 생각함...
-
그래도 나중에 돈 다시 돌려주는게 맞나 아님 걍 먹어도 되려나
-
탈릅하겠습니다ㅜ 8
지금 학원 끝나고 도착해서 헌재가 공정한 판결을 했는지 어쨋는지는 모르겠지만...
-
그놈의 의석수 딸려서 뭘 못했다고 하는 변명 볼때마다 6
ㅂㅅ 같았던게 아니 그럼 평소에 잘 좀하셔서 총선 이기지 그랬음 ㅋㅋㅋ 보수가...
-
올해 실시된 3월 모의고사 생활과 윤리 20번 문항입니다. 정답은 3번인데요. 갑은...
-
아니면 대한민국만 정치인들이 이모양인거임?
-
ㅜㅜ 심심띠예
-
난 왜 0
내일 승리 현강인데 갑자기 두각 앱이랑 홈페이지 둘 다 재원생이 아니라는거지 이런건...
-
아이고 8
내 공백
-
도저히 못풀겠네
-
관세지문있음 필독
-
내가 아는 실전개념 다 넣어서 밤세서 해설 쓸 예정 단순 해설이 아닌 개념설명까지...
-
둘다 보내고 나라 정상화 좀 해봐 너네가
-
어제 확통때메 빡쳐서 수학을 안해버린...
-
벌써 10년전이네요 ㄷㄷ
-
파이팅
-
ㅋㅋㅋㅋㅋ
-
머가 이득인가요
-
갑자기 우두두두 들어오네요
-
랜10005 2
빵가루
-
내신도 좋아야되고 탐구도 투과목 해야되는거임? 갑자기 궁금해짐
-
갑자기 든 생각인데 21
애니보다 든 생각인데... 어쩌면 학창시절에 나를 두고 미소녀 둘이 싸운 일이 있었지 않았을까?
-
기출보다 어려운것도 몇개보이는데
-
공통기준으로요 시대컨 한번도 안풀어봤고 문재 스타일이나 퀄리티 어떤 느낌인지...
-
무슨과목인가요?
-
아 신난다 4
동방에서
-
하끼발 4
소주샹4병반들이키고 눈앞리빙글빙글 술깨고 다시 올게요
-
드릴,드릴드로 쭉 밀어도 되나? 지금 공통 n티 푸는중인데 수1day3개...
-
또 기다려야되는구먼
-
작년에 어려워서 하이엔드만 유기햇엇는데
-
중대간호입결 1
정사로 가려면 대충 화미영물지 기준으로 백분위 몇씩받아야됨?
-
아니 하이엔드 진짜 ㅈㄴ어렵네.... 미들은 그래도 80퍼는 나오는거 같은데...
-
닉변 오? 10
오오!!
-
밥챙겨주고 재워주면 괜찮을거같음 근심없는 삶을 살고싶어
-
이ㅇㅇ 너 말고
-
그냥 다 리셋 성별부터 모든것이
-
24 3덮 수학 10
100 ㄷㄷ 28찍맞 난이도는 적당히 어려운편 어제 망한 8덮 복수 성공
-
국어 4
3모 1컷 -> 수능 백분위 99 이상 가능함?
-
3모 이정도면 얄심히 하면 으데까지 갈수잇을까... 5
국어 3 수학 1컷 영어 1 쌍윤21 국어를 못본게... 느므 한이다.ㅣㅣ
테일러 급수부터 읽어보시면 매우 유용할듯 합니다 :)
한동안 선생님 글 즐겁게 읽었어서 반갑네요!! 확인해주셔서 감사드립니다.
힝 ㅠ 요즘 자료 만드느라 넘넘 바빠요 ㅠ