무브
오르비
아톰
내 태그 설정
황보백T [813863] · MS 2018 · 쪽지
게시글 주소: https://orbi.kr/00062537162
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
선생님, 지금 현역 학생인데 이번 3모가 68점 정도입니다. 쉬운 4점부터 중간 난이도 4점을 푸는데 아직 어려움이 조금 있어서 보완하려 하는데 쉬사준킬 풀만할까요..?
네 쉬사준킬 도움될겁니다. 그런데 기출도 소홀히 해서는 안될 점수대라 랑데뷰 기출과변형 추천드립니다. 각단원 lev1,lev2,lev3로 나뉘는데 lev2만 집중적으로 마스터하시고 N제로 넘어가시면 더 좋을거 같아요. 감사합니다.
덕분에 복습 잘 했습니다. 191130, 211130, 231130 외에 수능에 출제된 무게 있는 합성함수 문항은 따로 없다고 생각해도 되나요?
저는 n축 쓰는 게 어려워서 그냥 수학(하)에서 직관적으로 합성함수 증감 파악하듯 보는 것이 아직은 더 익숙해서 그렇게 풀어봤습니다 (물론 211130이랑 거의 비슷한 논리 구조인 것 같아 풀이를 보임에 큰 의미는 없겠지만요,, 작성해봐서 남겨봅니다 ㅎㅎ)
굿~~~입니다^^ (폰이라 풀이가 안보이지만ㅠ 집가서 컴으로 볼께요.) 합성함수(N축)은 모든함수를 합성함수로 나타낼수 있다!로 보면 출제된 문제가 많아집니다. 예를들어 f(x)=sin2x일때 g(x)=sinx h(x)=2x 라하면 f(x)=g(h(x))인거죠. 이렇게 보면 수1,수2,미적분 등 n축 풀이가 되는게 훨씬 많아집니다. 가까운 평가원 미적분 문제만 봐도 230628 221128
아 230628이 있었군요. 그때 오랜만에 합성함수 개형 추론 문항 나왔다고 반가워했었는데 이제 보니 6월에 예고 한 번 하고 수능 때 30번으로 냈던 것이네요 ㄷㄷ 221128은 제가 응시했던 수능이라 기억이 잘 나는데 크게 어렵지 않았던 문항이라 의식하지 못하고 있었나봅니다. 말씀해주신 것 보고 방금 확인해보니 n축 (합성함수의 그래프 그리기) 을 제대로 쓸 수 있던 문제였네요, 알려주셔서 감사합니다!
풀어놓은게 있어서^^
오 감사합니다 이따 다시 풀어보고 풀이 확인해 학습에 참고하겠습니다!
정답~~~~~
혹시 두번째 문제 정답 31인가용?
제가 두번째 문제 풀때 f(x)가 x=0에서 극대라고 설정해놓고 답구했는데 x=0에서 극값을 가지지 않는 경우도 가능하지 않을까요? 이경우 제가 따져보려고 했는데 식이 너무너무 복잡해져서ㅜㅜㅜ
정답~~~작수 30번 답과 동일하게ㅎ
ㅎㅎ 맞춰서 다행이네용ㅠㅠ 근데 혹시 f(0)=2k+1 꼴이면 f(x)가 x=0에서 극값을 갖지 않아도 h(x)가 x=0에서 극솟값을 가지는데 이 경우를 엄밀하게 따지기가 힘드네용ㅠㅠ f(x)가 x=0에서 극값을 가지면 f(0)=f(3)이기때문에 (나)조건 해석이 용이한데 x=0에서 극값을 가지지 않으면 (나)조건 해석이 힘드네요ㅠㅠ 이런 경우는 어떻게 해석해야 할까요?ㅜ 감사합니다:)
살펴보니 그렇네요. f'(0)<0, f(0)=7 인 경우가 있으니 조건에 f'(0)=0 또는 f'(0)>=0 을 추가해야 되겠네요. 좋은 의견 감사합니다~~~~~^^
2026 수능D - 184
수능 4번 본 국어 100점/ 대치동 그룹강의 진행중
★내신/수능 수학 1등급 메이커★
사고력학원 전문강사 출신 수학 전문가
정말 본질적인 "생윤" 과외
#수능 영어 #목동, 대치동 출강 이력 #성균관대 졸업 #1등급 6개월 단기 완성 #내신 1등급 완벽 대비 #문법 노베이스 환영 #서울 상위 10위권 대학 합격자 다수 배출(설카포
고등학교진짜영어쌤
선생님, 지금 현역 학생인데 이번 3모가 68점 정도입니다. 쉬운 4점부터 중간 난이도 4점을 푸는데 아직 어려움이 조금 있어서 보완하려 하는데 쉬사준킬 풀만할까요..?
네
쉬사준킬 도움될겁니다.
그런데 기출도 소홀히 해서는 안될 점수대라 랑데뷰 기출과변형 추천드립니다.
각단원 lev1,lev2,lev3로 나뉘는데
lev2만 집중적으로 마스터하시고 N제로 넘어가시면 더 좋을거 같아요.
감사합니다.
덕분에 복습 잘 했습니다. 191130, 211130, 231130 외에 수능에 출제된 무게 있는 합성함수 문항은 따로 없다고 생각해도 되나요?
저는 n축 쓰는 게 어려워서 그냥 수학(하)에서 직관적으로 합성함수 증감 파악하듯 보는 것이 아직은 더 익숙해서 그렇게 풀어봤습니다 (물론 211130이랑 거의 비슷한 논리 구조인 것 같아 풀이를 보임에 큰 의미는 없겠지만요,, 작성해봐서 남겨봅니다 ㅎㅎ)
굿~~~입니다^^
(폰이라 풀이가 안보이지만ㅠ 집가서 컴으로 볼께요.)
합성함수(N축)은
모든함수를 합성함수로 나타낼수 있다!로 보면 출제된 문제가 많아집니다.
예를들어
f(x)=sin2x일때
g(x)=sinx
h(x)=2x
라하면
f(x)=g(h(x))인거죠.
이렇게 보면 수1,수2,미적분
등 n축 풀이가 되는게 훨씬 많아집니다.
가까운 평가원 미적분 문제만 봐도
230628
221128
아 230628이 있었군요. 그때 오랜만에 합성함수 개형 추론 문항 나왔다고 반가워했었는데 이제 보니 6월에 예고 한 번 하고 수능 때 30번으로 냈던 것이네요 ㄷㄷ
221128은 제가 응시했던 수능이라 기억이 잘 나는데 크게 어렵지 않았던 문항이라 의식하지 못하고 있었나봅니다. 말씀해주신 것 보고 방금 확인해보니 n축 (합성함수의 그래프 그리기) 을 제대로 쓸 수 있던 문제였네요, 알려주셔서 감사합니다!
풀어놓은게 있어서^^
오 감사합니다 이따 다시 풀어보고 풀이 확인해 학습에 참고하겠습니다!
정답~~~~~
혹시 두번째 문제 정답 31인가용?
제가 두번째 문제 풀때 f(x)가 x=0에서 극대라고 설정해놓고 답구했는데 x=0에서 극값을 가지지 않는 경우도 가능하지 않을까요? 이경우 제가 따져보려고 했는데 식이 너무너무 복잡해져서ㅜㅜㅜ
정답~~~작수 30번 답과 동일하게ㅎ
ㅎㅎ 맞춰서 다행이네용ㅠㅠ 근데 혹시 f(0)=2k+1 꼴이면 f(x)가 x=0에서 극값을 갖지 않아도 h(x)가 x=0에서 극솟값을 가지는데 이 경우를 엄밀하게 따지기가 힘드네용ㅠㅠ f(x)가 x=0에서 극값을 가지면 f(0)=f(3)이기때문에 (나)조건 해석이 용이한데 x=0에서 극값을 가지지 않으면 (나)조건 해석이 힘드네요ㅠㅠ 이런 경우는 어떻게 해석해야 할까요?ㅜ 감사합니다:)
살펴보니 그렇네요.
f'(0)<0, f(0)=7 인 경우가 있으니 조건에 f'(0)=0 또는 f'(0)>=0 을 추가해야 되겠네요.
좋은 의견 감사합니다~~~~~^^