수1 자작 맞추면 3천덕코 + 여담
게시글 주소: https://orbi.kr/00062240351
접점파티네요. 어렵지 않습니다.
선착순.
여담 & 번외문제)
원래는 이런 문제를 만들려고 했답니다. (풀지 마세요! 저도 답 몰라요.)
왜 이걸로 안 만들었냐 하면
안 풀려서요.
3시간 정도를 투자했는데도 될 듯 말 듯한데 도저히 안 풀려서
그냥 때려치우고 원 2개짜리인 다른 걸로 바꾸게 되었습니다.
문제를 내도 제가 풀 수 있는 걸 내야죠...
0 XDK (+2,050)
-
2,000
-
50
-
아 졸려 2
아 너무 졸려 이제 진짜 자야겠다 잘자요
-
주무십셔 2
ㅂㅂ
-
하나 풀엇다 으응
-
애석하게도 거짓말입니다 난 쓰레기야...
-
덕코날린줄알았는데
-
퀄리티가 심상치 않은데
-
경기권 일반고 고1 내신 국어5 수학4.5 영어2 통과2.5 국어 수학...
-
난 말미잘임
-
안녕여붕아너를처음본순간부터좋아했어5월전에고백하고싶었는데바보같이그땐용기가없더라지금은이수...
-
네코 5
냐옹♡
-
꺼진 화면 속 비치는 나의 얼굴이…
-
둘다비활타서 이제 내 본계정한테 보내는 중이야
-
이상한거 진짜 아니고 찾아볼게 있어서요ㅜ.. 진짜 이상한 사람 아님
-
김정은 전 북한 국무위원장이 전날 11시 27분 강원도 철원 인근의...
-
난 그냥 맛 필요없고 카페인이 필요할 뿐인데..
-
여르비가 뭐임 2
나.
-
메뉴가 별로라 밖에서 먹어야지 흐흐
-
자작모의고사 업로드합니다(수학: 확통 미적 기하 포함) 78
안녕하세요! 어딘가에서 수학을 가르치고 있는 수학강사 손승연입니다. 곧 다가올...
-
나 사실 4
여자 되보고싶음..
-
남자 번호도 따보고 싶다
-
사회문화 도표 개념만 알고 완전 처음해보는데요 처음부터 윤성훈쌤 M Skill 12...
-
현우진 선생님 n수생 오티에서 엉망이다 그냥 계획세우기부터 다시 배워 라고 하셨던...
-
흠
-
6모 접수 마감 0
하이퍼 전일학원 종로 강동pk 싹 다 마감임? 학교 갔다와서 자느라 전화를 못했네
-
사회문화 6시간 공부한 미친놈 됨
-
누구나. 자유롭게활동하는. 오루비. 괜히. 설래는맘. 품고.여사님들괴롭히지맙시다....
-
메가스터디에선 팔던데 대성에는 없나요?
-
옆에 여자가 한명밖에 없어서 못자겠음..
-
트러스를 풀다 어싸를 풀다
-
4월, 꽃이 피는 계절. 옯남B는 평소에 관심이 가던 썸녀 혹은 짝사랑녀 H에게...
-
中매체 "한중일, 美관세 충격 대응·반도체 공급망 유지 공감대" 2
한중일 통상장관회의 평가…"美 행동 불확실성에 확실성으로 헤징해야"...
-
모여보자
-
ㅋㅋㅋㅋㅋ
-
시대기숙 대기 걸어놓긴 햇는데 러셀최상위반기숙도 ㄱㅊ나요?? 현역 때 시대를...
-
선착순.. 한명.. 베트남 21세 여자에요 부드럽게 대해주실 오르비언 구합니다...
-
one two three I'll be there
-
그 사람인줄 알고 댓 달고있었네요...
-
ㅇㅇ
-
난 그런거말고 학문성교를 원하는데;;
-
누가 닉네임 2
정시일베로 바꿔주면 좋겠다..
-
어제?더프성적표받았네요 11
국어아쉽긴하지만그래도공부한보람이있네요기쁩니다 남은모의고사는더잘봐야겠죠
-
넘 졸리네 2
학교에서 잘 잔 줄 알앗는데 왜 이러지 자야겟다
-
키미니 아이타이
-
11살 여붕이랑 내 쪽지내역이 밝혀지면 곤란한데..
-
30분동안 재밌었다
81/8
89
정답! 3천덕코 드리겠습니다.
어떻게 푸셨나요?
번호대릉 정한다면 어디쯤 올 것 같나요?
c1의 중심이 (1,0) 반지름이 1
c2의 중심이 (k^m, m), 반지름이 m
이라서 두 중심 사이 거리=반지름 합
쓰면 되네요
10번대 정도 난도?인듯 합니다. 모고를 많이 안봐봐서 가늠이 잘은 안되네요 ㅋㅋ
덕코 감사함다
잘 풀어내셨네요! 수고하셨습니다!
문제 진짜 깔끔하네요!
사실 구하는 값에 대입하는 숫자를 대입하면 3:4:5의 길이비를 가지는 직각삼각형이 되어서 더 깔끔하게 풀 수도 있습니다ㅎㅎ
좋은 평가 감사합니다!
참고로 아래 문제는
a=1/2 [1-(k-1)\sqrt{(-k^2+2k+14)/(k^2-2k+2)] 라 했을 때
(k^a -1)^2+a^2=4의 해여서
우리가 아는 방법으로 풀 수 없습니다.
팁을 드리자면 문제를 다 만들고 식을 세우는 것보다 중간중간 과정에서 식을 세운 후에 그 식이 풀리도록 상수를 설정하는 것이 더 낫습니다. 세상의 많은 문제 중에 우리가 정확히 풀 수 있는 것은 극히 드무니까요. ㅎ
좋은 하루 되세요!
오... 확실히 다 짜놓고 맞추는 것보다는 중간중간에 식을 세우는 게 낫겠네요!
조언 정말 감사합니다. 좋은 하루 되세요!

문제가 아주 좋네요직역하면 잘 풀리는게 제 스타일
취향에 맞았다니 감사합니다!
엇…. 저도 저거랑 되게 비슷한 거 만들었는데 ㅎㅎㅎ그림이 예뻐요!!
지오지브라와 한글의 힘이죠ㅎㅎ
감사합니다!