[화학1 칼럼] 어짜피 비율 - 파급효과 미리보기
게시글 주소: https://orbi.kr/00062183359
기출의 파급효과 교재에 새로 쓰이게 된 계산량 줄이기 관련 칼럼입니다. 이 부분이 화학식량과 몰 단원에 쓰인 칼럼이라는 사실을 인지하고 읽으시면 됩니다. 이러한 기술을 활용한 풀이를 더욱 연습하시고 싶다면, 기출의 파급효과 교재나 추후에 공개하게 될 ebs 선별 분석서에서 연습해보실 수 있습니다.
※ 어짜피 비율 - (임의의 실제값 대입)
이 단원에 해당하는 문제들의 경우 꽤나 계산량이 많다. 특히 제작년 수능인 2022학년도 수능부터 이러한 경향이 두드러졌다. 이러한 복잡한 계산을 하는데에 있어서 미지수가 많으면 많을수록 계산이 복잡해지기 마련이다. 그래서 문제 풀이의 진행과 계산에 있어서 이 많은 미지수들 대신 실제값을 사용하여 계산을 편리하게 하도록 하는 하나의 기술을 소개하고자 한다. 이 기술은 현재 서술하는 2단원에서 뿐만 아니라 4단원에서도 계산량을 줄이기 위해서 사용될 수 있기 때문에 이 기술을 잘만 활용한다면 시험장에서의 강력한 무기가 될 수 있을 것이다. 가장 먼저 이 기술을 사용할 수 있는 조건에 대해서 먼저 알아보겠다.
1) 문제에서 요구하는 값을 확인하자.
화학I은 비율의 과목이다. 문제 조건에서 빈번히 등장하는 상댓값과 분수 자료들이 이를 증명한다. 상댓값이나 분수 자료를 답에서 요구하는 경우, 미지수를 많이 잡더라도 결국에 마지막에 가서 답을 낼 때는 이 미지수들이 소거되기 마련이다. 우리는 이걸 역으로 이용해서 문제에서 요구하는 값이 상댓값이나 분수(비율)일 경우, 조건을 만족하는 미지수를 잡는 대신 이 조건을 만족하는 편리한 임의의 실제값을 넣어보자는 것이 기술의 취지이다. 그럼 예시를 들어가며 어떤 상황에서 이 기술을 사용할 수 있는지 알아보자.
이 선지의 경우 이전에 언급했던 2022학년도 대수능 18번 문항의 선지이다. 이 선지를 관찰해보면 선지 ㄱ,ㄴ,ㄷ 모두 문제에서 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에 이 기술을 쓸 수 있다. 한가지 예시를 더 알아보자.
이 선지의 경우 위에 등장했던 2022학년도 대수능과 같은 해 9월에 18번으로 출제되었던 문항의 선지이다. 이 선지를 관찰해보면 (가),(나),(다)의 대응을 물어보는 ㄴ선지를 제외하고는 모두 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에도 이 기술을 쓸 수 있다.
2) 조건을 만족하는 임의의 실제값을 대입하자
임의의 실제값을 대입한다는 말이 무엇인지에 대하여 간단한 예시를 들며 설명해보겠다. 문제를 풀이하다 보면 미지수를 도입한뒤 자료 해석을 통해 미지수간의 관계를 알게되는 방식으로 풀이 과정을 전개해 나가는 경우가 매우 많다. 얘를 들어 도입한 미지수가 x,y,z이고 문제 조건 해석을 통해 알게 된 미지수들간의 관계가 x=4y=2z라고 해보자. 이러한 경우에 임의의 실제값을 대입한다는 말은 x 대신에 4, y 대신에 1, z 대신에 2를 대입하여 문제 조건을 통해 구한 미지수들 간의 관계, 즉 비율을 만족하고 동시에 더욱 편리한 실제값을 대입함으로서 계산의 간결성을 챙긴다는 말이다. 추가적으로 문제를 풀어보며 이해를 돕도록 하겠다.
자작문항 예제)
풀이)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고1 3모때 0
61113이었음
-
아
-
좋은 아침입니다 5
메인 또 왜저럼 아직도 안끝났나..
-
근데미친새기가공부를수능3일전에시잣함
-
국힘 지지했었는데 이제는 지지못하겠네 나라꼬라지..
-
조건 가의 함수가 2,4를 근으로 갖는 이유가 분모가 0 이되어버려서 그런가요...
-
흐흐
-
몰랐어요 난 내가 별이라는 것을
-
얼마 전에 읽었던 도서랑 너무 비슷한데요
-
1.황제도 뭐 비율관계 거의 처음 가르쳤다고 했었는데 그땐 욕하던 사람들 지금은...
-
수특이나 인강은 본격적으로 8월부터 공부하려고하는데 1월부터 듀오링고하고있고...
-
의미 있없
-
여기서 원점대칭은 어떻게 봐라봐야하나요 삼차함수의 미정계수와 관련 있어보이는데...
-
이승효쌤 입장정리입니다 참고로 저는 댓글알바도 아니고 조교도 아니고 그냥 수학...
-
이승효가 풀이 베꼈다는 게 개쌉소리인 이유를 알아보자.. 7
ㅎㅇ 나다 내가 누구냐고 수학3따리 재수생이다 흑흑 제목이 워딩이 개쎈데 내가...
-
[속보] 국민의힘, 김문수 선출 취소…새벽 4시까지 새 후보 등록신청 접수 4
국민의힘이 김문수 대선 후보의 선출 취소 절차를 완료했다. 동시에 새로운 대선...
-
지금 10도라 나와있는데 원래 5월이 추웠음? 작년 학교축제 4월 중순말인가 했던...
-
4
-
안철수 서울대 교수가 SBS ‘힐링캠프, 기쁘지 아니한가’에 출연해 그 동안의...
-
아까 글 올린 노베인데요... 기하를 어떻게 할까 하다가 일단 공간도형파트만...
-
정법 현강 낄까 말까 고민햇는데 올해는 먼가 불안해서 그냥 9모 이후에 다니기로 함
-
20대대선이 진짜 역대급 개병신대선인줄 알았는데 진짜 지금보면 선녀네 21대는...
-
국힘은 이제 민주주의 사회의 공당이라고 봐주기도 부끄럽네 1
중국 공산당이랑 형태 제일 비슷할듯 좆주당보다 기괴해짐
-
근데 국힘 진짜 돌았네 12
저러면 진짜 이재명vs이준석 양자로 가겠는데? 국힘은 소멸할듯
-
얼버기 11
강아지가 방문 긁어서 인남
-
치즈를 매우 좋아한다네요
-
오노추 0
심심하면 노래나 듣고가셈
-
난이도 궁금 왜냐? 오늘 풀러가는데 벌써부터 풀기 싫음^^!
-
작수때 ㄹㅇ 시간 한 50분? 남았는데 13 14 15 20 21 22 27 28...
-
수령까지 기간 얼마걸림
-
주말만 되면 자기 싫음
-
다들 용돈 1
얼마나 받으심? 책값 제외한 값.
-
짜증나
-
으아아악 정상화기원...
-
생활패턴 망가짐 5
잠이 안 온다 ㅠ
-
목 나갔네 5
친구들이랑 파티룸옴
-
이원준 강민철 1
이원준 독서 강민철 문학 이케 들어도 되나요 막 방식이 충돌해서 이상해지고 그러지 않겠됴?
-
10억까지는 할 수 있지 않을까 30대 초에 엑싯을 해서 한 100억을 버는거임..
-
점심을 국밥 짜장면 or 편의점 밖에 못먹어서 서러운 거 빼곤 다 좋은 듯
-
나 순수한건가 10
님들이 귀엽다고하면 나 진짜로 귀엽다고 생각하게되고 님들이 댓글달아주니까 인싸가...
-
화작만 안 틀렸어도 3모 1 5모 2 떴을 텐데...... 그 자료? 문제도 어렵고...
-
잔다 2
르크
-
기출 푼 후에 1. 내가 기출을 얼마나 잘 습득했는지 2. 계산 실수를 잘 잡고...
-
현역 5모 후기 1
탐구만 보면 머리가 안돌아가네요 평소에 물리 모고도 많이 풀어봤는데 왜 이렇게 꼬였을까요..
-
책장 ㅁㅌㅊ? 5
포차코 귀여움
-
각각 난이도가 어떻게 되나요? 드릴이나 어싸같은 문제집이랑 비교했을때요
-
김상훈 문학론 2
지금 박광일 듣고있는데 지금 김상훈 문학론 듣기 시작하기엔 너무 늦었나요..? 아님...
-
그래도 이재명은 못뽑겠다 준스기로 가야하나
-
뭐라해야되냐
감사합니다 선생님, 확률과 통계 성적 향상에 깊은 도움이 되었습니다.
ㅋㅋㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋ