수학질문-확률단원(독립사건,배반사건)
게시글 주소: https://orbi.kr/0006213593
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가난한 사람들은 뭐 안락사시키고 싶은거임? 아무것도 하지말고 애도 낳지 말라는거는...
-
전문직으로도 자산가격 폭주를 따라잡을 수 없는 시대가 온 것 뿐 나머지는 아예 길이 사라지는거임
-
그전에 지금 대통령이 누군지 먼저 생각을 해봐야됨
-
남이 어떻게 살든 별 관심 없음
-
역시 역사는 반복된다
-
하사십 즌2 0
뒤에 2회독 문항 들어가는 대신 해설지가 분권당했네
-
일단 나는 셀프로 가난하게 큼.
-
생윤 일기 0
6모 기준 44점이 나왔다 난이도가 쉽기도 했어서 크게 의미를 두지는 않아야겠지만...
-
세지 1
이과 반수생 사탐 처음 해봄 사문 찍먹했는데 너무 재미없어서 세지하려 하는데 지금...
-
내가 봤을 때 0
가난한 집에서 애 낳는거 학대라 운운하는 애들은 얼굴 ㅈ박았을듯 이성한테 관심받거나...
-
내가 몸쓰는 일 하다와서 잘 알고있음 2년간 최저정도 받고 개인으로 나오면 월600...
-
나와
-
신드리 귀여웡~~~ 10
우웅~~~
-
뻘글이나 써야지
-
오늘은 아무것도 안 먹어야지
-
이새끼 혼자 지금 초양극화 90%는 만들었다고 보면 됨
-
안그러면저런놈들이...읍읍
-
두둥등장 12
하이하이 무슨 얘기중이지
-
인문학의 중요성을 느끼면 너무 문과충인가?
-
현재의 갈망이 충족되는 것으로 당신이 영원히 행복하진 않습니다. 그렇다고 갈망하지...
-
영어 일기 0
V구문 좋은 것 같다 나는 구문 분석은 되는데, 독해가 되질 않는다 김지영쌤은...
-
이게뭐람
-
우리아빠도 인생 ㅈㄴ열심히 사심 1974년 경북 김천 가난한 신문 배달부의 집에서...
-
난 걍 별 생각이 없어서... 대충 먹고살만큼 벌수있으면 ㄱㅊ다는 마인드 그러면...
-
그런 게는 죽었습니다 :p
-
영어 강사이기 때문에, 수업 커리큘럼과 별 관련 없는 칼럼 1. She loves...
-
한의사 좋음 3
한의대는 싫음
-
돈뿌리기+금리인하 때문에 부동산 상승은 확정되어잇음
-
김일성 ㅅ발럼
-
그냥 자유롭게 살게 해주는건 학대 아니지않나...? 너무 이상한 길로 빠지지만 않게...
-
베이스를 무시하지마라 11
https://youtube.com/watch?v=3pLAwoNoxC8
-
인생이 망해도 전문직이라는거임
-
동사하시는 분 0
개념 나갈 때 동사 하루에 몇 시간씩 하심? 다른 과목 하느라 하루에 2시간씩...
-
국어 일기 0
한번 쭉 읽고 풀고 분석할때는 내가 했던 사고들 쭉 적고 문제는 뭘 묻는지 무슨...
-
작년 드릴이나 다른 문제집들에 비해 좀 술술 풀려서요 실력이 는건지 문제가 쉬운건지를 모르겠어요
-
부모님들이 학생들에게 공부시키지 않는 것도 학대라고 생각합니다 13
특별한 경우를 제외하고 부모님들이 자기 자식을 각 학년 최소 기준을충족하지 않은...
-
이라는나쁜말은ㄴㄴ..
-
서브웨이먹어야지 19
쿠키는 첨먹어보는데 맛잇을까
-
(수학질문) 0
시행착오가 길면 님들은 보통 어떻게 하심
-
“내가 금수저로만 태어났다면 이렇게 피똥싸며 N수하면서 메디컬 가려고 노력 안...
-
수험생 여러분 12
여러분께 중요한건 메타 참전이 아니라 여러분의 수능 점수입니다..
-
확통이 너무 어렵노
-
신택스 현재 듣고있고 이명학 수능루틴 풀려했는데 조교븐께서 신택스 끝나고 하는게...
-
고퀄 칼럼과 무료 자료를 뿌려주던 고닉분들이 산화되니까 백수 늙은이들이랑 분탕들이...
-
현장 언매 10분컷 <<< 장사치들이 만들어낸 허상임 0
언매 모의고사로 연습을 하겠다 <<< 참 좋은데 언매 모의고사 양치기로 시간을...
-
주변인 증언에 따르면 대입보다 편입이 쉽긴한데 막 성인이 되서 대학맛을 봤는데도...
-
내가 앙 채가게
-
1. 지구를 못해서 다른 과목으로 튀었는데 불안하거나 2. 튀었는데 성적이...
-
뭔가 메타참전 마렵지만 10
쫄려서 그냥 구경만 하기로 했다
-
6시간 공부 성공! - 7시간 하면 책을 빼앗길 예정이에요. 7
제목이 이상하죠? ㅎㅎ 말 그대로입니다. 하루 순공시간 6시간 확보에 성공했어요!...
주사위를 다시던진다는 말이 2번째 시행을 거친다는 말이면 두사건은 배반사건이 아니에요
그 2번은 가능한가요?
질문이 무슨뜻인지 잘모르겠어요
밴다이어그램만보고 두사건이 종속인지 판단할수있는 밴다이어그램이 존재하냐는 질문인가요?
조금 다른데
확률이 0이 아닌 사건 A,B가 있을때
A라는사건하고 B라는사건이 종속이다.
이런 명제가있으면 이걸 밴다이어그램으로 그려보시오 하면 그릴수있는건지 없는건지 궁금합니다
그냥 독립이아닌 두사건의 밴다이어그램을 어떤 수치든 대입해서 그리면 되는거아닌가요? 교집합이 없어도 종속이구요
수치가 안정해져있는 임의의 A의B라면(AB는 공집합이아님) 교집합이 있는밴다이어그램을 보면 이게 독립인지 종속인지 판단은 불가한거죠?
아 이제 이해했습니다 감사합니다
1
P(A)는 1/2. P(B)는 1/2. P(A l B)=P(AnB)/P(B)인데 P(AnB)가 0이라서 0.
즉 독립( P(A)=P(A l B) )
이 아님 = 종속 = 독립이 아닌 두 사건을 종속이라고 합니다.
2.
벤다이어그램만으로는 종속과 독립의 여부를 결정하지 못합니다. 서로의 확률을 찾아내서 P(A)P(B)=P(AnB)인지를 따져봐야 합니다.
서로가 배반사건일경우 보통의 사건이라면 독립이 되지는 않습니다. 그리고 독립과 배반에 대해 혼동하고 계신데 독립을 정의하는건
사건 A가 전체사건에 대하여 일어날 "확률"=사건 A가 사건 B가 일어났다는 전제하에 일어날 "확률" 입니다. 사건 B가 일어나든지 말든지 사건 A에 미치는 영향이 없다는게 여기서 나온말인데 무심히 보면 배반사건의 정의(P(AnB)=0)와 헷갈릴수 있습니다만 독립은 어디까지나 "확률이 같음"을 의미하는거고 배반은 "둘 사이의 공통이 없음"을 의미하는 겁니다. 전~혀 다른 두 개념 혼동하지 마세요.
?ㅋㅋㅋㅋ
1. 두개가 왜독립이냐 했냐면
주사위를 던졌을때 짝수가나올사건이 다음번 주사위를 던졌을때 홀수가 나올 사건과 전혀 관계가없어서 독립이라한거에요
제가 정신이없어서 헷갈렸는데 P(AnB)는 0이아닙니다 A와B는 서로배반아니구요
A와B는 독립맞습니다 종속아니구요
그래도 친절하게 답변해주셔서 감사합니다ㅋㅋㅋ
저도 잘못된 풀이를 읽으니까 P(AnB)=0인게 막 당연한거같고ㅋㅋㅋ착각했었는데
님도 똑같이 세뇌당하심 ㅋㅋㅋㅋ저 독립 배반 다 압니다 ㅜㅜ
두 시행을 서로다른 시행으로 보았다면 독립이아니라 독립시행이라고 했어야죠. 그렇다면 저 두 사건은 서로 독립시행인거지 독립여부은 따질수 없다고 하는게 맞습니다. 독립시행이랑 독립도 전혀 다른개념이에요.
독립여부 따질수있는데요..
P(A)=1/2 , P(B)=1/2
사건 AnB를 순서쌍으로 나타내면 (2,1)( 2,3)( 2,5)( 4,1)( 4,3)( 4,5)( 6,1)( 6,3)( 6,5)
따라서 P(AnB)=9/36=1/4
따라서 P(AnB)=P(A)P(B)인데 독립이아니라는건가요?
교집합이라 함은 둘의 집합을 벤다이어그램으로 그렸을때 서로가 공유하는 같은 원소가 있어야 되요. 즉 원소를 나열할때 P(AnB)의 모든 원소는 A에도 B에도 그 모든 원소가 있어야 한다는 뜻이에요.
그리고 짝수와 홀수는 서로가 여사건 관계라서 교집합이 생길수 없습니다.
님이하신건 P(AnB)가 아니라 P(A)P(B)(사건 A와사건 B가 동시에 일어나는 확률)이고 P(AnB)가 0이므로 독립이 아니고 종속이고 서로의 시행이 다른 시행에 영향을 주지 않기 때문에 두 사건이 독립시행인건 맞습니다.
저 교과서풀이 그대로 옮겨쓴건데요
교과서에서 그렇다고 하면 할말없지만 제 생각에는 두 사건을 독립시행이지 독립이라고 보는건 완전 억지인거 같은데 왜 교과서가 독립이라고 했는지는 이해가 가질 않네요. P(AnB)의 정의를 지멋대로 해석했으면서 억지로 두 사건은 독립이라고 우기는거 같은데 한석원한테서 배운 제가 잘못 배웠을수도 있지만 그냥 교과서의 오류일 가능성이 더 크다고 봅니다.
두사건을 독립으로 보는게 왜억지죠 ㅋㅋㅋㅋ
주사위한번던져서 짝수가나오면 다음던졌을땐 홀수나올확률이 증가하거나 감소하나요?ㅋㅋㅋㅋ
저도 작년에 알텍확통들었는데요 님이 이해를 잘못하신듯요
교과서 발췌
어떤 시행에 대한 표본공간 S의 두 사건 A,B는 S의 부분집합이므로 두 집합의 연산을 이용하여 AUB
AnB 를 만들수있고 , 이 집합들은 표본공간의 부분집합이 되므로 새로운 사건으로 이해할 수있다.
이때 사건AUB가 일어난다는 것은 사건 A 또는 B가 일어난다는 뜻이고, 사건 AnB가 일어난다는 것은 사건 A와 사건 B가 동시에 일어난다는 뜻이다.
서울대 수학과 교수님들이 쓴건데 우긴다건가 지멋대로 해석한다니요 ㅋㅋㅋㅋ
님이 오히려 'P(AnB)의 정의를 지멋대로 해석'했다고 볼수있겠네요
밴다이어그램자체를 잘못그렸다고 할수있는데요 밴다이어그램 자체를 순서쌍으로 그렸어야합니다
아아아이제 여기 댓글 그만달게요 쓸데없이 시간너무 많이쓰네요 교과서한번읽어보세요 ㅅㄱ~
같은댓글이 여러개달려서 삭제했습니다~