-
성현동동아아파트 3
이 무슨 남남수수학학원원장 같은 역 이름이지
-
거짓인생… 0
감당이 안되는구나
-
오늘 밤새고 낼 단과 3개 듣고 집와서 일찍 잘거임
-
어디갓지;
-
오르비 2
좋앙~~
-
멘탈나가서 567 주르르 틀려버린 나 노이즈보기랑 #~#, 지문형문법 2개는 냅다...
-
난 그래도 다른 과목을 아예 못하지 않아서 점점 발전해서 공주머리가 있느누줄 알앗어...
-
20억 있으니 20개 뿌려라 그게 이치다
-
사탐런 제발 3
현역이고 사탐런 해야할지 고민이에요 생지 하다가 생명 세지로 돌렸고 노베로 이번...
-
와메인처음가봄 2
강사찬양뻘글에좋아요눌러줘서고마워요 근데 김종두t는 진짜GOAT시니까 수리논술준비할때...
-
이렇게하면 면제가능?
-
[국어]독서 - 피램 생각의 전개 1권 완료 / 2권 진행중 / 수특 독서 진행중...
-
그럼 나도 내가 사는 곳 부심을..
-
받으세요
-
고뱃이새끼들 걍존나부러움..
-
‘전사증’이 뭐길래… 북한군은 왜 목숨을 내거는가[주성하의 ‘北토크’] 0
분단의 장벽 너머에서 일어나는 일들을 반세기 동안 북한을 지켜봐온 주성하 기자의...
-
이 또한 커뮤의 순기능이겠죠
-
오노추 눈물이 안났어 - 임정희
-
안녕하세요 김희범(구차니즘)입니다. 개인적으로 정리한 6모 대비 EBS 수능특강...
-
피제이님 팬이에요
-
몸무게 앞자리 9에서 10kg 감량함
-
살면서 열다섯번째로 후회되는일임 ㄹㅇ
-
난 사람 적당히있고 잔잔한 오르비가 좋아 소통을 못하겠네
-
근데 6점까임 팩트는대학을못갔다는거임
-
기만주의) 12
-
ㅈㄴ 밤새서 썼다 15장 분량으로
-
해설지 따로 사야 하는 건가요??
-
쫄면먹는중
-
저 작수 11틀 + 영어2였는데 설낮공 점수 나왔었음
-
뭐 현역 설의면 뭐 열등감 느낄거리가 있나 근데 나랑 비슷했던사람이 뽀록띄워서...
-
주제 고트 하이라이트 고트 여주 얼굴 고트(모텔) 여주 무력 고트 여주 남주 나이...
-
뉴런 할말 5
현역 미적이고 11, 15, 21, 22, 29 틀림 시간이 촉박해서 들을까말까...
-
어지러운 문제 배워도 배워도 헷갈리는데 어떡함?
-
어그로는 끌되 0
역한발언은 하지말거라
-
주말 특히 토요일에 공부를 하려고 해도 안 되는데ㅠ 평일에는 정말 열심히 하는데...
-
근데 이제 틀린게 원서인
-
지1 질문 3
기단이 이동하는 방향이 바람이 불어가는 방향과 같나요?
-
유슴레유슴레 ㅠㅠ
-
박?제 1
"사과했는데 왜 안 받아주냐"
-
님들 학고재수 하면 다음 대학교에서 국장받을때 불이익있음? 5
국가장학금이 학점 안나오면 못받음 (1학년 1학기는 예외) 1. 나는 입학성적...
-
씨발좆같다 6
씨발제일비참할때가같은거반복학습할때랑열심히했는데성적이안오를거같을때아니야?씨발3월에시작했...
-
개씨발
-
남잔데 임신가능??
-
왤케 추천도가 높은거임? 드릴 설맞이 이해원 하사십 어려운n제는 이정도로 풀었는데...
-
ㄹㅇ..
-
연습중인데
-
잇올팁 공유 6
너무 힘들때 쉬는시간 되기전 10분부터 자면 25분 수면 가능! 그러면 잠도 안오고...
분모 괄호가 한개 없는데 어디에 있는 건가요?.
분모 괄호가 무엇을 말씀하시는 건가요? x가 a가 아닐 때의 g(x)를 말하시는 건가요?
아 분자요
아 미처 확인하지 못했었네요 알려주셔서 정말 감사합니다!
수정했습니다. 다시 한 번 감사드립니다!
934 16? 잘모르겠넹
정답!
어떻게 푸셨나요? 20~21번 정도의 난이도를 예쌍하고 만들었는데 적당한가요?
풀이도 올려주시나요 ㅋㅋㅋ ㅠ
잠시만 기다려주세요!
3000덕코 보내드렸습니다. 확인해주세요!
땡
g(x)가 연속함수라는 조건은 어디에도 없습니다. 이차함수와 직선의 관계에 따라 케이스를 나누고 잘 관찰하는 것이 관건인 문제입니다. 이해가 안 되는 지점이 있다면 따로 물어봐주세요!
오 이해했어요!! 일단 제가 x축으로 -a 만큼 옮긴거는 함수관계는 같게 나오니까 괜찮은데, 멋대로 연속조건 써서 (x=0제외 기함수인데 그냥 기함수로 판단해서 0,0지나는 거로 판단하는 실수를 했네요) CASE 분류를 너무 못했네요! 풀이 감사합니다 !! 그리고 집합표현도 다시 익히는 기회가 되었네요 감사합니다,!!
정의역/치역/공역 표현은 언제든 나올 수 있으니 보면 무슨 의미인지 알 수 있게만 알아두시면 됩니다! 문제에 관심 가져주셔서 감사합니다!
이게 뭔말인지 모르겠어서 수학 하 집합 펴봐야겠네요
h(m)의 모든 함숫값의 집합을 치역이라 합니다. k는 h(m)의 함숫값이 될 수 있는 수들을 모두 더한 값이 되는 거죠.
조금 더 읽기 쉽게 h(m) 앞에 '함수'라는 표현을 추가했습니다.
생각해보니까 수2 이용하는 단계는 하나도 없네요... 고1수학으로도 충분히 풀 수 있을듯.