수2 자작 맞추면 3천덕코
게시글 주소: https://orbi.kr/00061996587
킬러입니다.
선착순.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋ 생윤사문이나 할까 일단 사탐이 맞음. 물1은 이제 기억도 안나
-
아니 왜 근 2년 1컷이 계속 50임 그 아래론 거의 안 내려감?
-
칭찬해주세요 2
군대에서 전역한지 1개월... 전역하기 2개월 잔부터 열심히 공부해서 총 3개월...
-
연대 시스템반도체 딱 대 ㅋㅋ
-
나는 라면 끓일줄 밖에 모름 감바스랑 김볶밥이런거 뚝딱 하는 사람 고기 잘 굽는 사람도 꽤 괜찮은데
-
이번주도 끝 2
내일은 집에서 배 벅벅 긁으면서 풀고 싶은 과목 순서대로 5모를..
-
신성규쌤 7
고능한풀이 잘생김 피지컬 좋음 공짜 유투브 더프해설 뭐지
-
술 마심 11
ㅎㅇ
-
기다려라 이미지
-
5월이 승부수다 0
6모 잘봐야 원서 쓸때도 편할건데 새기분, 도표특강 확통 뉴런 등등 인강...
-
생윤 했을때 2
영어의 추상적인 제재가 나올때 도움이 될 수 있나요?
-
새거있는데 팔기가 귀찮다 택배보내기 귀찮
-
애니 라인업이 너무 미쳤음.
-
그 형님 6
오늘 오르비에서 한번도 못봤는데 빡공하시는중인거 같아요
-
피노키오p 콘 갔다 옴 15
우리 형 진짜 너무 호감임
-
이렇게 수험생들 힘차게 응원해주시는 분이 있을까 스플랑크니조마이:)
-
공부시간 늘려? 2
5시반 일어남 버스 3~40분 운동 30분+ 씻기 15분 학원에서 아침줘서 그거...
-
난 10시인데 좀 더 있는게 맞으려나..
-
살인의추억볼까 6
너의이름은볼까
-
작년 1회차는 기하는 좀 그랬는데 이번에 1회차 풀고 느낀게 이번엔 진짜...
-
치타가 달리기 시작했다
-
카나토미 산 사람들에게 사이버거 뿌리기 난 2권 샀으니 2개주셈
-
진짜
-
양승진vs신성규 0
3모 3등급. 5모 2등급(15,20,21,22,미적28,29,30) 받았습니다...
-
나나오 아카리 7
우효www
-
잇올 끝낫어용 3
하나씩 읽어볼까 흐흐
-
강사픽 0
국어: 유대종 수학: 남지현(확통, 공통) 영어: 김기병
-
뭐 소식이 없으니 관심이고 뭐고 기억에서 사라졌던
-
똥먹기 5
미소녀 똥 우걱우걱
-
국어-박석준(러셀 재종생이라 학원에서 정해줬는데 매우×88588만족 중)...
-
그동안 입시 끊고 있었더니 너무 무관심했나봐요!! 의대정원 축소말고 더있나여
-
지금은 카나토미나 n제 풀어야지 아 카나토미 강의 영상이 없구나 +이미 듣는 사람은...
-
하이볼 맛있당 6
-
잘푸는법있음?? 너무오래걸리는데 진짜
-
반가워여 입학하고 처음으로 들어왔네유
-
아직도 완강 안됨?
-
형들 나 확통 1단원 끝냈는데 ㅎㅎㅎㅎ 2단원 할만해? 1
이제 좀 편해지는거야?
-
문학 추천 해주세요 지금은 피지컬로 밀어붙이는 스타일입니다..
-
강사픽 1
이원준 정병호, 강기원 션티 이기상 백건아
-
ㅋㅋ
-
지1 질문 5
북반구에서는 전향력 때문에 저기압이 왼쪽 그림처럼 되어야 하는거 아니에요? 왜...
-
문학 다 맞았는데 독서 2개 빼고 다 틀렸어요 항상 독서를 말아먹어서 이젠 독서...
-
Source Text: "Practice Makes Perfect: Advanced...
-
나도 이제 옯창탈출
-
며칠전에 의대관 퇴소했는디 찍먹충이라 거의 유명한사람은 다들어본듯?
-
책의 낱장에 코를 대서 종이냄새를 흡입하면 기분 좋아짐
-
올해 인강픽 3
이원준 오르새 X 배기범 오지훈 과탐은 선택권이 없지만 국수는 안들어본 쪽으로 가봄
순서쌍에서 헤메는중........ a=1부터 차근차근 하면 나올려나요
조건 해석은 다 햇는뎀
그래프 개형이 2가지 케이스가 나온다는 걸 아시고, 조건 해석까지 다 하셨다면
차근차근 하는게 맞습니다! 화이팅 :)
으아앙.... 혹시 제가 맞게 해석했는지
(1,10)의 쌍이 되는건지만 체크해주실 수 있나요...ㅠㅠ
순서쌍 넘 싫어요
(1,10) 가능합니다! 잘 하고 계십니다!
문제의 요지는 삼차함수의 1:2랑 극한식해석인거 같은데 연습량이 부족해서 그런지 머리가 빨리 돌아가질 않네요... 마음과는 다른 나의 손
극한식 해석이 이 문제의 관건입니다. 삼차함수 1:2도 순서쌍을 구할 때의 키포인트고요. 정확히 파악하셨네요.
16...?
a=1 b=6,7,8,9,10,11
a=2 b=4,5,8,9,11
a=3 b=4,5,6,7,9
땡
a는 잘 구하셨는데... b가 문제가 됐네요.
g(n)의 정의역과 극한식 해석을 조금 더 꼼꼼히 해 주시면 해결하실 수 있겠습니다.
n이 홀수일때는 그냥 절댓값함수의 미분계수꼴이고 n이 짝수일때는 좌미분계수꼴 아닌가용?
맞습니다!
힌트) g(n)의 정의역이 자연수 전체의 집합이라는 것은, 모든 자연수 n에 대하여 g(n)이 함숫값을 가진다는 것을 의미합니다. 그리고 x^n의 그래프는 n의 값에 따라 개형이 달라집니다.
화이팅!

으아 순서쌍 넘넘넘넘싫진짜 모르겠어요 ㅠ b에 어디가 틀렸을까요......
핵심 단서 - f(x)의 x축과의 접점이 아닌 교점에서는 미분계수가 존재하지 않습니다. 다만 좌미분계수는 존재하죠.
예 해석을 정말 잘 했는데...
아
ㅎㅎ
a=1 b=6,7,8,9,10,11
a=2 b=4,5,8,9,11
a=3 b=4,5,6,7,9
a=4 b=5,7
18....?
틀리면 그냥 생물하러 갈래요
아닙니다ㅠㅠ
어디가 틀렷나요?
a=4라면 a보다 작은 n의 g(n)은 a가 접점이 아닌 경우에 음수가 4개, 점점인 경우 3개입니다. 하지만 a에서 접점이라면 b는 짝수가 되어 좌미분계수만 따져야 합니다. 그때 g(b)는 음수이기 때문에 g(n)이 음수인 n이 4개가 되어 a=4인 (a,b)는 존재하지 않습니다.
a=3이라면 f(x)는 반드시 a에서 점점을 가져야 합니다. 그러면 b에서 접점이 아닌 교점을 가지는데, 이때 b는 짝수여야 합니다.
a=1인 경우도 똑같고요.
네 어디가 틀렸는지 알겠네요
a=2인 경우를 잘 나누어야 합니다. f(x)가 2에서 점점이 아닌 교점을 가질 때 가능한 b의 값은 쉽게 구할 수 있습니다. 하지만 접점을 가진다면 f(x)는 b에서 점점이 아닌 교점을 갖기에 좌미분계수만 따져야 g(b)가 존재할 수 있습니다. 즉, a에서 f(x)가 접점일 때 b는 짝수여야 한다는 거죠.
절댓값 그래프의 개형을 유의해서 접근하셔야 합니다...! 생물 화이팅!
자연수를 정의역으로 하는 함수
라고 하면 모든 자연수에대해 함숫값이 존재해야 한다는걸 놓쳤나봅니다...

나머진 다 맞았는데....이 점을 놓치기가 쉽습니다. 작수 22번에서 g(x)가 연속임을 문제에서 발견하지 못한 경우가 많은 것처럼 말이에요.
와 ㅈ댔다 다 까먹었네..
문제가 까다로운 거지, 실력은 충분히 있으실 겁니다! 화이팅!
7개?
인가요
아 6개
b중근
2,4
a중근
1,10
1,12
2,8
2,10
3,6
땡
처음에 구하신 게 맞을 듯 합니다. 올바르게 구한 순서쌍을 나열해 주신다면 덕코 드릴게요!
6개..?
2,4
2,5
1,12
2,10
3,8
4,6
땡
<조건 해석>
절댓값 함수에 대해서
n이 홀수 -> 미분계수
n이 짝수 -> 좌미분계수
a>4인 경우는 이미 n이 1~4로 4개 이상 존재하니 불가능
a가 홀수면 접점이므로 b는 짝수
a가 짝수인 경우부터 보면(b의 홀짝성에 즉각적인(?) 제약을 안 주기 때문에 먼저 구합니다.)
1) a=4
n이 1~3으로 존재하므로 n이 4가 되지 않기 위해서는 a에서 x축과 접해야 한다. 그러나 g(b)가 존재해야 하므로 b는 짝수여야 하고, n=5가 추가되어 가능한 경우는 없다.
2) a=2 - a에서 x축과 접하는 경우
n은 1이 되고 2가 되지 않는다. g(b)가 존재해야 하므로 b는 짝수여야 하고, 2개의 n이 더 추가되기 위한 b의 값은 6과 8이다. b가 10 이상이면 3개가 추가된다.
3) a=2 - a에서 x축과 접하지 않는 경우
n=1, n=2가 모두 성립한다. g(b)는 홀수여도 상관 없고, 1개의 n이 더 추가되기 위한 b의 값은 5만 존재한다.
4) a=1
g(a)가 존재해야 하므로 a는 x축과의 접점이고, g(b)도 존재해야 하므로 b가 짝수이다. n의 값이 2개 더 추가되게 하는 b는 8, 10이다.
5) a=3
같은 논리로 a에서는 x축과 접하고 b는 짝수이다. 그러나 n=1, 2가 이미 추가된 상태이므로 1개 더 추가되어야 한다. 이때의 b는 4, 6이다.
(1, 8), (1, 10)
(2, 6), (2, 8), (2, 5)
(3, 4), (3, 6)
8개
어어 분명 괄호를 몇 개 써놓으신 거죠?
어 뭐야 7개요
정답! 완벽한 풀이입니다!
난이도는 어떤가요?

일단 눈이 좀 아파요 ㅋㅋㅋㅋ난이도는 수능보단 확실히 어렵고 실모 22번 정도 아닌가 싶네요. 그래도 아이디어도 좋고 노가다나 복잡성이 막 과하거나 하진 않아서 괜찮았어요
좋게 평가해주셔서 감사합니다!
저거 세다가 눈 나빠졌어요 책임지세요
덕코로 책임지겠습니다
아 그리고 자작이나 칼럼 같은 공부 관련 글 쓰실 때 학습태그 달면 좋아요 받을 때 500XDK씩 받을 수 있어요! 서로 눌러 줍시다 ㅋㅋㅋㅋ
3000 덕코 드렸습니다. 확인해보세요!
오오 그건 몰랐네요! 꽤 유용할 것 같아요. 감사합니다! 이제 좋아요를 벅벅
다시 돌아보던 와중에, 3)번 케이스의 경우에는 b가 4인 경우도 가능하더라고요...
정답이 (2,4)까지 추가되어 8개로 수정되었습니다
으악 통과근이 짝수여야만한다 아닌가요
통과근 짝수여야한다 맞습니다