수2 자작 맞추면 3천덕코
게시글 주소: https://orbi.kr/00061996587
킬러입니다.
선착순.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고정1이 안뜸 빈칸을 찍는것보다 못한 수준으로 틀려대서... 듣기때 독해푸는 순서가...
-
이새끼맨날수능때만쳐망함 ㄹㅇ 너무좆같음..
-
성현동동아아파트 3
이 무슨 남남수수학학원원장 같은 역 이름이지
-
거짓인생… 0
감당이 안되는구나
-
오늘 밤새고 낼 단과 3개 듣고 집와서 일찍 잘거임
-
어디갓지;
-
오르비 2
좋앙~~
-
멘탈나가서 567 주르르 틀려버린 나 노이즈보기랑 #~#, 지문형문법 2개는 냅다...
-
난 그래도 다른 과목을 아예 못하지 않아서 점점 발전해서 공주머리가 있느누줄 알앗어...
-
20억 있으니 20개 뿌려라 그게 이치다
-
사탐런 제발 3
현역이고 사탐런 해야할지 고민이에요 생지 하다가 생명 세지로 돌렸고 노베로 이번...
-
와메인처음가봄 2
강사찬양뻘글에좋아요눌러줘서고마워요 근데 김종두t는 진짜GOAT시니까 수리논술준비할때...
-
이렇게하면 면제가능?
-
[국어]독서 - 피램 생각의 전개 1권 완료 / 2권 진행중 / 수특 독서 진행중...
-
그럼 나도 내가 사는 곳 부심을..
-
받으세요
-
고뱃이새끼들 걍존나부러움..
-
‘전사증’이 뭐길래… 북한군은 왜 목숨을 내거는가[주성하의 ‘北토크’] 0
분단의 장벽 너머에서 일어나는 일들을 반세기 동안 북한을 지켜봐온 주성하 기자의...
-
이 또한 커뮤의 순기능이겠죠
-
오노추 눈물이 안났어 - 임정희
-
안녕하세요 김희범(구차니즘)입니다. 개인적으로 정리한 6모 대비 EBS 수능특강...
-
피제이님 팬이에요
-
몸무게 앞자리 9에서 10kg 감량함
-
살면서 열다섯번째로 후회되는일임 ㄹㅇ
-
난 사람 적당히있고 잔잔한 오르비가 좋아 소통을 못하겠네
-
근데 6점까임 팩트는대학을못갔다는거임
-
기만주의) 12
-
ㅈㄴ 밤새서 썼다 15장 분량으로
-
해설지 따로 사야 하는 건가요??
-
쫄면먹는중
-
저 작수 11틀 + 영어2였는데 설낮공 점수 나왔었음
-
뭐 현역 설의면 뭐 열등감 느낄거리가 있나 근데 나랑 비슷했던사람이 뽀록띄워서...
-
주제 고트 하이라이트 고트 여주 얼굴 고트(모텔) 여주 무력 고트 여주 남주 나이...
-
뉴런 할말 5
현역 미적이고 11, 15, 21, 22, 29 틀림 시간이 촉박해서 들을까말까...
-
어지러운 문제 배워도 배워도 헷갈리는데 어떡함?
-
어그로는 끌되 0
역한발언은 하지말거라
-
주말 특히 토요일에 공부를 하려고 해도 안 되는데ㅠ 평일에는 정말 열심히 하는데...
-
근데 이제 틀린게 원서인
-
지1 질문 3
기단이 이동하는 방향이 바람이 불어가는 방향과 같나요?
-
유슴레유슴레 ㅠㅠ
-
박?제 1
"사과했는데 왜 안 받아주냐"
-
님들 학고재수 하면 다음 대학교에서 국장받을때 불이익있음? 5
국가장학금이 학점 안나오면 못받음 (1학년 1학기는 예외) 1. 나는 입학성적...
-
씨발좆같다 6
씨발제일비참할때가같은거반복학습할때랑열심히했는데성적이안오를거같을때아니야?씨발3월에시작했...
-
개씨발
-
남잔데 임신가능??
-
왤케 추천도가 높은거임? 드릴 설맞이 이해원 하사십 어려운n제는 이정도로 풀었는데...
-
ㄹㅇ..
순서쌍에서 헤메는중........ a=1부터 차근차근 하면 나올려나요
조건 해석은 다 햇는뎀
그래프 개형이 2가지 케이스가 나온다는 걸 아시고, 조건 해석까지 다 하셨다면
차근차근 하는게 맞습니다! 화이팅 :)
으아앙.... 혹시 제가 맞게 해석했는지
(1,10)의 쌍이 되는건지만 체크해주실 수 있나요...ㅠㅠ
순서쌍 넘 싫어요
(1,10) 가능합니다! 잘 하고 계십니다!
문제의 요지는 삼차함수의 1:2랑 극한식해석인거 같은데 연습량이 부족해서 그런지 머리가 빨리 돌아가질 않네요... 마음과는 다른 나의 손
극한식 해석이 이 문제의 관건입니다. 삼차함수 1:2도 순서쌍을 구할 때의 키포인트고요. 정확히 파악하셨네요.
16...?
a=1 b=6,7,8,9,10,11
a=2 b=4,5,8,9,11
a=3 b=4,5,6,7,9
땡
a는 잘 구하셨는데... b가 문제가 됐네요.
g(n)의 정의역과 극한식 해석을 조금 더 꼼꼼히 해 주시면 해결하실 수 있겠습니다.
n이 홀수일때는 그냥 절댓값함수의 미분계수꼴이고 n이 짝수일때는 좌미분계수꼴 아닌가용?
맞습니다!
힌트) g(n)의 정의역이 자연수 전체의 집합이라는 것은, 모든 자연수 n에 대하여 g(n)이 함숫값을 가진다는 것을 의미합니다. 그리고 x^n의 그래프는 n의 값에 따라 개형이 달라집니다.
화이팅!

으아 순서쌍 넘넘넘넘싫진짜 모르겠어요 ㅠ b에 어디가 틀렸을까요......
핵심 단서 - f(x)의 x축과의 접점이 아닌 교점에서는 미분계수가 존재하지 않습니다. 다만 좌미분계수는 존재하죠.
예 해석을 정말 잘 했는데...
아
ㅎㅎ
a=1 b=6,7,8,9,10,11
a=2 b=4,5,8,9,11
a=3 b=4,5,6,7,9
a=4 b=5,7
18....?
틀리면 그냥 생물하러 갈래요
아닙니다ㅠㅠ
어디가 틀렷나요?
a=4라면 a보다 작은 n의 g(n)은 a가 접점이 아닌 경우에 음수가 4개, 점점인 경우 3개입니다. 하지만 a에서 접점이라면 b는 짝수가 되어 좌미분계수만 따져야 합니다. 그때 g(b)는 음수이기 때문에 g(n)이 음수인 n이 4개가 되어 a=4인 (a,b)는 존재하지 않습니다.
a=3이라면 f(x)는 반드시 a에서 점점을 가져야 합니다. 그러면 b에서 접점이 아닌 교점을 가지는데, 이때 b는 짝수여야 합니다.
a=1인 경우도 똑같고요.
네 어디가 틀렸는지 알겠네요
a=2인 경우를 잘 나누어야 합니다. f(x)가 2에서 점점이 아닌 교점을 가질 때 가능한 b의 값은 쉽게 구할 수 있습니다. 하지만 접점을 가진다면 f(x)는 b에서 점점이 아닌 교점을 갖기에 좌미분계수만 따져야 g(b)가 존재할 수 있습니다. 즉, a에서 f(x)가 접점일 때 b는 짝수여야 한다는 거죠.
절댓값 그래프의 개형을 유의해서 접근하셔야 합니다...! 생물 화이팅!
자연수를 정의역으로 하는 함수
라고 하면 모든 자연수에대해 함숫값이 존재해야 한다는걸 놓쳤나봅니다...

나머진 다 맞았는데....이 점을 놓치기가 쉽습니다. 작수 22번에서 g(x)가 연속임을 문제에서 발견하지 못한 경우가 많은 것처럼 말이에요.
와 ㅈ댔다 다 까먹었네..
문제가 까다로운 거지, 실력은 충분히 있으실 겁니다! 화이팅!
7개?
인가요
아 6개
b중근
2,4
a중근
1,10
1,12
2,8
2,10
3,6
땡
처음에 구하신 게 맞을 듯 합니다. 올바르게 구한 순서쌍을 나열해 주신다면 덕코 드릴게요!
6개..?
2,4
2,5
1,12
2,10
3,8
4,6
땡
<조건 해석>
절댓값 함수에 대해서
n이 홀수 -> 미분계수
n이 짝수 -> 좌미분계수
a>4인 경우는 이미 n이 1~4로 4개 이상 존재하니 불가능
a가 홀수면 접점이므로 b는 짝수
a가 짝수인 경우부터 보면(b의 홀짝성에 즉각적인(?) 제약을 안 주기 때문에 먼저 구합니다.)
1) a=4
n이 1~3으로 존재하므로 n이 4가 되지 않기 위해서는 a에서 x축과 접해야 한다. 그러나 g(b)가 존재해야 하므로 b는 짝수여야 하고, n=5가 추가되어 가능한 경우는 없다.
2) a=2 - a에서 x축과 접하는 경우
n은 1이 되고 2가 되지 않는다. g(b)가 존재해야 하므로 b는 짝수여야 하고, 2개의 n이 더 추가되기 위한 b의 값은 6과 8이다. b가 10 이상이면 3개가 추가된다.
3) a=2 - a에서 x축과 접하지 않는 경우
n=1, n=2가 모두 성립한다. g(b)는 홀수여도 상관 없고, 1개의 n이 더 추가되기 위한 b의 값은 5만 존재한다.
4) a=1
g(a)가 존재해야 하므로 a는 x축과의 접점이고, g(b)도 존재해야 하므로 b가 짝수이다. n의 값이 2개 더 추가되게 하는 b는 8, 10이다.
5) a=3
같은 논리로 a에서는 x축과 접하고 b는 짝수이다. 그러나 n=1, 2가 이미 추가된 상태이므로 1개 더 추가되어야 한다. 이때의 b는 4, 6이다.
(1, 8), (1, 10)
(2, 6), (2, 8), (2, 5)
(3, 4), (3, 6)
8개
어어 분명 괄호를 몇 개 써놓으신 거죠?
어 뭐야 7개요
정답! 완벽한 풀이입니다!
난이도는 어떤가요?

일단 눈이 좀 아파요 ㅋㅋㅋㅋ난이도는 수능보단 확실히 어렵고 실모 22번 정도 아닌가 싶네요. 그래도 아이디어도 좋고 노가다나 복잡성이 막 과하거나 하진 않아서 괜찮았어요
좋게 평가해주셔서 감사합니다!
저거 세다가 눈 나빠졌어요 책임지세요
덕코로 책임지겠습니다
아 그리고 자작이나 칼럼 같은 공부 관련 글 쓰실 때 학습태그 달면 좋아요 받을 때 500XDK씩 받을 수 있어요! 서로 눌러 줍시다 ㅋㅋㅋㅋ
3000 덕코 드렸습니다. 확인해보세요!
오오 그건 몰랐네요! 꽤 유용할 것 같아요. 감사합니다! 이제 좋아요를 벅벅
다시 돌아보던 와중에, 3)번 케이스의 경우에는 b가 4인 경우도 가능하더라고요...
정답이 (2,4)까지 추가되어 8개로 수정되었습니다
으악 통과근이 짝수여야만한다 아닌가요
통과근 짝수여야한다 맞습니다