자작 수1 문제(지수 로그함수)
게시글 주소: https://orbi.kr/00061992815
그냥 별 거 없는 단순한 문제입니다. 기출이랑 비슷하기도 하죠.
(주관적) 난이도 : 3/10
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
해설지 따로 사야 하는 건가요??
-
쫄면먹는중
-
저 작수 11틀 + 영어2였는데 설낮공 점수 나왔었음
-
뭐 현역 설의면 뭐 열등감 느낄거리가 있나 근데 나랑 비슷했던사람이 뽀록띄워서...
-
주제 고트 하이라이트 고트 여주 얼굴 고트(모텔) 여주 무력 고트 여주 남주 나이...
-
뉴런 할말 5
현역 미적이고 11, 15, 21, 22, 29 틀림 시간이 촉박해서 들을까말까...
-
어지러운 문제 배워도 배워도 헷갈리는데 어떡함?
-
어그로는 끌되 0
역한발언은 하지말거라
-
주말 특히 토요일에 공부를 하려고 해도 안 되는데ㅠ 평일에는 정말 열심히 하는데...
-
근데 이제 틀린게 원서인
-
지1 질문 3
기단이 이동하는 방향이 바람이 불어가는 방향과 같나요?
-
유슴레유슴레 ㅠㅠ
-
박?제 1
"사과했는데 왜 안 받아주냐"
-
님들 학고재수 하면 다음 대학교에서 국장받을때 불이익있음? 5
국가장학금이 학점 안나오면 못받음 (1학년 1학기는 예외) 1. 나는 입학성적...
-
씨발좆같다 6
씨발제일비참할때가같은거반복학습할때랑열심히했는데성적이안오를거같을때아니야?씨발3월에시작했...
-
개씨발
-
남잔데 임신가능??
-
왤케 추천도가 높은거임? 드릴 설맞이 이해원 하사십 어려운n제는 이정도로 풀었는데...
-
ㄹㅇ..
-
연습중인데
-
잇올팁 공유 6
너무 힘들때 쉬는시간 되기전 10분부터 자면 25분 수면 가능! 그러면 잠도 안오고...
-
친구가 어렵다해서 걍 풀어봤는데 (가) 조건으로 a 1,2,3,4,5,6pi...
-
그나마 이런 빌런들이 불태울때 존나 까면서 그나마 잠깐이나마 덜 우울할수있음..
-
왜 이렇게 많아 ㅋㅋㅋㅋㅋ 괜히 불안감만 커지네요 ㅋㅋㅋㅋ 내거에요 근데 ㅠ
-
좆같은말 하면 쳐맞아야지 ㅋㅋ
-
누가누가 잘찍나 38
21세 여자가 얼굴이 붉어지고 목소리가 떨린다며 병원에 왔다. 어려서부터 다소...
-
역시 정상화는
-
커뮤에서 하고싶은말 다 하고 살수있음 ㄹㅇ..
-
지방이 1
졸귀
-
그러니까 내 지방 좀 지워다오
-
저는 13,15 기하는 28 30은. 걍 벡터 좋아해서 재밌게 푼듯
-
ㅇㅎ
-
오르비 여러분, 여러분은 지금 도를 넘었다는 생각 안 드십니까? 12
평소에 오르비를 눈팅만 하던 사람입니다만 도저히 작금의 상황에 개탄을 금할 수가...
-
[Web발신] 1
너는나를존중해야한다나는발롱도르5개와수많은개인트로피를들어올렸으며2016유로에서포르투갈을...
-
안녕하세요 9
전기쥐입니다
-
수학 실모 추천 좀 12
6모 보기전에 실모2개정도 풀려고 하는데 추천부탁드립니다 닌이도는 적당했으면...
-
우리 고등학교는 미개한 애들이 많았음
-
내년에 수능치는 대깨설 09년생입니다...지금까지 화1을 계속 잡고 있었고 등급도...
-
내 그곳 검 ㅇㅇ
-
결국 그 사람한테 전해지는 진심이 있을때 성공하더라 꼭 좋은 사람이면 잡아보려고 노력하시길
-
걍 저지랄로 저능해졌음 ㅋㅋ
-
저격을멈춰주세요 0
N수(망함) 명문대(아님) 지방(살았었음) ㅅㅂ럼들아 3수 지역인재 의대가...
-
제가 실력 딸려서 그러는 지 모르겠지만 29번은 계산 범벅입니다 하지만 30번은...
-
드립치고 싶은데 참아야겠지
2

어떠셨나요!허수라 일단 x² - 2x까지 잡고 A B 좌표 정수로 떨어질만한 거 적당히 특정해서 f(x) 잡고 풀었읍니다 ㄷ
정석 풀이가 궁금해집니다!
거리가 3루트2니까 y=-x+k랑 f(x), 지수 로그함수 싹 다 평행이동해서 생각해 보면 좀 쉬워요

아 그리고 이차함수와 두 점에서 만나는 직선은 두 교점의 산술평균인 x좌표에서의 접선과 평행하다는 것도 떠올려야 할 거예요!헉 이건 처음 알아가네요..! 설명 감사합니다!!
이차함수의 도함수가 일차함수니까요! 수능에 나왔는지는 모르겠지만 나름 괜찮은 것 같아서 써먹어 봤어요
최종적으로는 얘를 평행이동하면 돼요
오 뭔가 조건 제시를 조금 더 보기 좋게 다듬었으면 좋았겠지만 문제 아이디어 자체는 되게 좋은 문제 같아요!!

발문 쓰는 게 좀 익숙하지 않네요 ㅠㅠ으엥 잘 이해가 안 되는데
길이가 3루트2인 것만으로 y=-x+k 와 교점이다 라는 결론이 나오나요
제가 뉴비라서 잘 모르는걸수도잇고여
지수함수와 로그함수의 기본 형태에서 (-1, 1)만큼 이동시킨 후 평행이동한 걸로 볼 수 있기 때문에 두 함수는 y=x+k에 대해 대칭이라고 할 수 있어요
잘 평행이동을 시켜 보면 보일 거예요!
대칭인 건 알겠는데 교점 사이의 거리가 3루트2인 것만으로 저 두 교점이 기울기가 -1인 직선 위에 놓여있다고 할 수 있나여?
그게 아니라 평행이동된 칸 수(?)를 세 보면 기울기가 1인 직선에 대해 대칭이 돼요
위에 있는 그림을 참고하시면 좋을 것 같아요!
혹시 해설은 따로 없으신가요
내가 뭔가 잘못생각하고잇나
아직 쓰진 않았는데... y=2^(x+1)+1과 y=log2(x)가 y=x+1에 대해 대칭이라는 건 이해 되시죠? 그거 평행이동한 거예요
그건 아까부터 알았는뎅
요게 길이가 루트2의 배수인 것만 가지고 무조건 기울기가 -1인 직선의 위에 있다는 걸 확정할수는 없는거아닌가.. 라는 생각이 드네용
저 이차함수의 상수항에 다른 수가 들어가더라도 교점 사이의 거리가 3루트2일 수 있지않나 라는 생각
범위로 다른 한 가지 경 빼도록 문제 수정했어요! 의도대로 풀면 검산은 안 해도 되는 급으로 쉬우니까 저러면 되겠죠...
이차함수와 한 직선의 교점의 x좌표들의 산술평균을 x좌표로 하는 이차함수 위의 점에서의 접선의 기울기가 그 직선의 기울기와 같다는 건 아시나요?
네네
기울기가 -1인 직선과 저 두 함수의 교점을 구하면 평균 x좌표가 1/2 나와서 그렇게 쓴 거였는데
모든 기울기가 -1인 직선과 저 두함수의 교점의 x좌표의 평균이 1/2이라는 말씀이신가여
저 지수함수와 로그함수 그리고 보조적으로 그린 기울기가 -1인 직선 사이의 교점 x좌표 평균이 1/2 나왔어요
거리가 3루트2인 다른 교점 쌍에 대해서는 x좌표 평균이 1/2 안 나오지 않나요...? 확실하게 증명한 건 아니긴 하지만
그게 사실 제 논점이에여.. 실례 하나가 있긴 하지만 다른 경우가 없는지 논리적으로 확증할 수가 없다는
근데 교점의 x좌표 평균이 1/2이 되는 다른 점에서는 두 교점을 이은 직선의 기울기가 -1이 안 되긴 하니까 그 방법으로 밝히긴 어렵죠
좋은 지적이네요! 사실 저도 대학수학 찍먹하면서 엄밀성이 중요하다 느끼긴 했는데 문제 내기 참 어렵긴 해요
지수함수 위에 원을 그려서 생각해 보니까 교점이 2개 생기는 구간만 아니면 교점의 x좌표 합은 원의 중점 x좌표가 증가하면 증가하기 때문에 문제가 없는데...
원래 의도는 이걸 찾는 거였는데

보니까 하나 더 존재할 것 같네요... 조건 하나만 추가해야겠습니다 ㅠㅠ