[미적 자작 문제] 합성함수 미분법
게시글 주소: https://orbi.kr/00061223631
앞선 문제와 비슷한 맥락에서 표현의 참신함 (사실 참신함보다는 어색함이라 표현하는 것이 적절할 것 같습니다, 참신하다는 표현은 더 세련된 4점짜리 문항에 붙여야할 것 같아요) 을 의도했고 위키백과에서 elementary function에 관한 설명을 읽다가 '방정식 (f(x))^5+f(x)+1=0을 만족하는 함수 f(x)'라는 표현으로부터 영감을 얻었습니다.
문제는 단순한 합성함수 미분법 문제입니다. (가) 조건에는 조건제시법과 원소나열법을, (다) 조건에는 정적분으로 정의된 함수 유형에서 x와 t를 구분하는 감성을 살려 x와 h를 구분해보라는 의도를 담았습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
15번 조차도 어려운 건 아닌거같은데… 다른 문제 대비해서 생각할 만한 포인트가...
-
오르비(매체 공부)를 하게 된다 문법 ㅈㄴ 싫다
-
당황스럽다 11
영어 수요가 왜 많지
-
대학붙었잖아 시발 개새끼들아
-
고정1이 안뜸 빈칸을 찍는것보다 못한 수준으로 틀려대서... 듣기때 독해푸는 순서가...
-
이새끼맨날수능때만쳐망함 ㄹㅇ 너무좆같음..
-
성현동동아아파트 3
이 무슨 남남수수학학원원장 같은 역 이름이지
-
거짓인생… 0
감당이 안되는구나
-
오늘 밤새고 낼 단과 3개 듣고 집와서 일찍 잘거임
-
어디갓지;
-
오르비 2
좋앙~~
-
멘탈나가서 567 주르르 틀려버린 나 노이즈보기랑 #~#, 지문형문법 2개는 냅다...
-
난 그래도 다른 과목을 아예 못하지 않아서 점점 발전해서 공주머리가 있느누줄 알앗어...
-
20억 있으니 20개 뿌려라 그게 이치다
-
사탐런 제발 3
현역이고 사탐런 해야할지 고민이에요 생지 하다가 생명 세지로 돌렸고 노베로 이번...
-
와메인처음가봄 2
강사찬양뻘글에좋아요눌러줘서고마워요 근데 김종두t는 진짜GOAT시니까 수리논술준비할때...
-
이렇게하면 면제가능?
-
[국어]독서 - 피램 생각의 전개 1권 완료 / 2권 진행중 / 수특 독서 진행중...
-
그럼 나도 내가 사는 곳 부심을..
-
받으세요
-
고뱃이새끼들 걍존나부러움..
-
‘전사증’이 뭐길래… 북한군은 왜 목숨을 내거는가[주성하의 ‘北토크’] 0
분단의 장벽 너머에서 일어나는 일들을 반세기 동안 북한을 지켜봐온 주성하 기자의...
-
이 또한 커뮤의 순기능이겠죠
-
오노추 눈물이 안났어 - 임정희
-
안녕하세요 김희범(구차니즘)입니다. 개인적으로 정리한 6모 대비 EBS 수능특강...
-
피제이님 팬이에요
-
몸무게 앞자리 9에서 10kg 감량함
-
살면서 열다섯번째로 후회되는일임 ㄹㅇ
-
난 사람 적당히있고 잔잔한 오르비가 좋아 소통을 못하겠네
-
근데 6점까임 팩트는대학을못갔다는거임
-
기만주의) 12
-
ㅈㄴ 밤새서 썼다 15장 분량으로
-
해설지 따로 사야 하는 건가요??
-
쫄면먹는중
-
저 작수 11틀 + 영어2였는데 설낮공 점수 나왔었음
-
뭐 현역 설의면 뭐 열등감 느낄거리가 있나 근데 나랑 비슷했던사람이 뽀록띄워서...
-
주제 고트 하이라이트 고트 여주 얼굴 고트(모텔) 여주 무력 고트 여주 남주 나이...
-
뉴런 할말 5
현역 미적이고 11, 15, 21, 22, 29 틀림 시간이 촉박해서 들을까말까...
-
어지러운 문제 배워도 배워도 헷갈리는데 어떡함?
-
어그로는 끌되 0
역한발언은 하지말거라
-
주말 특히 토요일에 공부를 하려고 해도 안 되는데ㅠ 평일에는 정말 열심히 하는데...
-
근데 이제 틀린게 원서인
-
지1 질문 3
기단이 이동하는 방향이 바람이 불어가는 방향과 같나요?
-
유슴레유슴레 ㅠㅠ
-
박?제 1
"사과했는데 왜 안 받아주냐"
-
님들 학고재수 하면 다음 대학교에서 국장받을때 불이익있음? 5
국가장학금이 학점 안나오면 못받음 (1학년 1학기는 예외) 1. 나는 입학성적...
브링 근호 말씀이신가여
찾아보니 Quintic equation 이 x^5+x+a=0 꼴을 의미하는 표현이군요! 식 자체로 의미가 있는지는 몰랐는데 덕분에 알게 되었네요 감사합니다
f의 역함수를 g라 하고 (나)의 양변의 x자리에 g를 대입하면
g = 1/2 (x^5 + x)를 얻는다.
(가)에서 f(3) = 1 이므로 f'(3) = 1/ g'(f(3)) =
1/g'(3) = 1/203
근데 애초에 (나) 식에서 f(3) = 1 대입하면 모순인 듯요
저는 역함수를 직접 찾기보다 주어진 관계식 자체의 양변을 미분해서 5(f(x))^4f'(x)+f'(x)-2=0을 얻길 의도하기도 했습니다
위에 아얘 잘못 적었네요
(가)의 해집합이 {1} 이고, 구하라는 값이 3f'(1)이면 문제 없는 듯 합니다.
f의 역함수를 g라 하고 (나)의 양변의 x자리에 g를 대입하면
g = 1/2 (x^5 + x) 를 얻는다.
f(1) = 1이므로 f'(1) = 1/(g'(f(1)) = 1/g'(1) = 1/3
따라서 3f'(1) = 1
아 맞아요 ㅋㅋㅋㅋ 원래 나 조건이 (f(x))^5+f(x)-2=0이었는데 이래버리면 f'(3)=0이 되어버려서 나와서 -2x로 고쳤더니 모순이 되어버렸군요
진짜 출제 의도 제대로 파악하셔서 풀어주셨습니다 감사드려요

넵 좋은 문제 감사합니다