[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
게시글 주소: https://orbi.kr/0006105887
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능때 이정도뜨면 11
내신 cc여도 설대 인문 or 연대 상경(내신5.0) ㄱㄴ?
-
어디 나도 한번 해볼까 어 씨123발
-
결정장애옴
-
ㄱㄷ
-
낯설다 너란 놈.. 꼭 정복하고야 말겠다 으흐흐
-
아니 다 읽으라고 만든건데 저게 말이 됨? 글면 독서도 발췌독 한다하지 납득이 안 됨..
-
변환해도 ㅇㅈ못할 사람들은 개추 ㅋㅋㅋ
-
만국의 추남들이여 단결하라
-
님들때문임 아.. 나 잠들때까지만 글쓰기를 멈추셈
-
똥싸고 앞뒤로 문지르면 수능을 잘본다고요?
-
안녕하세요 정시 처음해보는 현역입니다 말이 이상한데 그냥 한마디로 내신이 망한 것...
-
이건 ㄹㅇ 구라다ㅋㅋㅋ
-
지브리 1
기테
-
찐vs짭 5
-
슈뢰딩거의 고양이님 ㅇㅈ해주세요
-
본인 다리 긴데 3
기이다란데 뚜꺼움
-
지브리 보정기는 빼앗아가지 말아다오..
-
휴 3모 풀었다 2
조졌긴한데 풀긴했잖아 진짜 풀지말까 230번 고민했는데 국어 수학만이라도 풀어보잔...
-
분명히 쉬운데 정답률은 낮음 ㅋㅋ 미적 표점 부활의 신호탄이라 볼 수 있다. 29번...
-
Gpt도 내 얼굴을 정상화 시키지 못함
-
보정 잘됬노
-
수학 목표가 1이라 하루에 수학만 서너시간을 공부해야하는데 시간이 하루에 공부가능한...
-
치마가 이쁜거임 내가 입는단건 아니고;
-
한나라당 -> 새누리당 -> 자유한국당 -> 국민의짐힘 새누리당 고인 프리 닭근혜...
-
얘는 혼자 진심으로 그려줬네
-
수업의 흔적 1
이렇게 열심히 수업하는데 학생이 공부를 안함
-
풀이도 보고싶은데 대성강사분중에 그렇게 푸는 분 계신가요
-
어제 막차타고 기차에서 내렸는데 내 앞에 어떤 여성분이 고대 검은색 과잠을 입고...
-
고1 국어 문학 1
고1이나 고2 문학 지문 위주로 된 책 혼자서 풀어보고 싶은데 추천해주세요
-
챗지피티 시발련이 14
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
야 이 기요마 14
기요미야
-
지브리랑 3
나랑 ㄹㅇ 하나도 안닮앗네
-
확실히 파악 안해놓으면 틀리는 문제 수능에도 출제 된 적 있나요 And 나올 확률있나요
-
화학 공부 어떻게 하죠.. 답지 보며 공부해도 될까요.. 문제 하나에 2시간...
-
왜 난 안해주는데 앱으로 했는데!
-
존예 목록 7
추가하는중
-
대전차오함마술 0
끼얏호우
-
지브리 토토로말고 다 들어보기만 했지 잘 모르겠네요
-
너도 기하해~
-
지브리 그려옴 0
쥐부리글려
-
당근으로 파는중 근데 팔거 중에 20%정도 팔았음
-
“흡족”
-
ㅇㅈ 2
ㅁ ㅇㅈㅁ
-
막글싸고싶다 0
뿌다다닷
-
2027년 의대열풍으로 인한 사교육 과열로 인해 너도나도 실력없는 강사들이 양산되기...
-
수능 안할래
-
2일연속 6
7병 ㅎ
-
풀지도 않을 위클리 모의고사인지 뭔지 그만 강매시켜라
-
운동하기
-
독서 질문ㅠㅠ 0
두번째 사진에서 저두부분이이 이해가 안가요ㅠㅠ 만약에 120을 2 4 8 16.....
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^