[110615] 고난도 미분 (수정)
게시글 주소: https://orbi.kr/0006071901
f(x) 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사람이 어떻게 매일 지각할수가 있겠음 그쵸
-
감기인채로 등교 2
-
좋은아침 8
와… 어제 일찍 잘 걸
-
ㅇㅂㄱ 1
피곤하지만 힘내보자
-
무슨 강의 런닝 타임이 6시간이지 하루종일 국어만 하는 수준이누
-
어떤 거 가장 추천하세요?
-
수급자 메디컬 1
평백 몇 정도 나와야 가능한지 아시는분… 제발요… 인증 가능하시면 치킨 깊콘 드려요…
-
사탐런 2
국영수 422 정도 나오는데 생명 사문 하다가 생명 도저히 아닌거같아서 생윤으로...
-
드디어 백가인 4
기필코 백가인 이게 옳게 된 세상이지
-
셤공부는 3
해도 불안 안하면 편안 뭐 아는게 없는거 같네
-
학교 출발 0
오마갓
-
예전에 증명 어떻게 하는지 알았는데 까먹었어요 증명 필요없으니까 그냥 씁시다.
-
지금까지 안잠 3
아니 사실상 못잠 코딩과제 좀 뭣같아서
-
그리고 잠이 오지 않는다면 자지 않는다 패턴이 아주 멸망햇군
-
새르비언 0
잘자용
-
에후 5
재미가 하나도 없농
-
이래야 스트레스를 안 받을것같아
-
자신이 없다. 6
시험을 못 칠 자신이
-
보르코딜로포르콸라 에르 코ㅓㄹ로미로 포퓨ㅢ토크ㅏㅗ루저오사주스기미자으
-
사반수해볼까 0
시험 공부하다 현타오고 갑자기 든 생각 여기도 오랜만이네요
-
정운오 딱대 1
학교에 새로 생긴 건물인데 짱좋음요
-
정말 무서운건 1
오전 시험이 영어고 오후 시험이 생명인데 나는 생명 ppt만 보고잇다는것임
-
내일 시험인데 공부하나도안함... 유급당하는거아니겠지 출석과제는 다하는데
-
오늘 ㅇㅈ 5
-
본애니 9
별로없음 + 원펀맨 암살교실 프리렌 보는중인건 소녀종말여행 아베무지카...
-
하나 4
하나무브링 크카캌ㅋ
-
근데 왜 내 닉 6
제 닉은 무브링인데 왜 다들 브링이라고 하시는 거조
-
맞추면 5000덕 왈왈
-
왈왈 아르를ㄹ르르르르 왈 크크킁아앙
-
ㅇㅇ
-
혼자가면 뭐함 메이드 카페나 조질까 모에모에뀽~~
-
심심해 2
-
엄두가안나네
-
난 24시간도 못 버티고 중간에 쓰러짐
-
이화 간호학과목푠데 3모 141받음(사탐 공부안함..) 논술도 볼거라서 목표하는...
-
놀면 안되는데 일단 놀고 보는 깡 정도나 생길 수 있는거임
-
모두 굿밤 3
좋은 밤 되세요 너무 늦게 자서 후회하지 마시고
-
저능대결 3
여러분이 승자입니다 감사합니다^^ ㅈㅅ농담임
-
저능대결 4
내가 이김
-
실모 배틀하면 누가 이길거 같음?
-
노래추천 2
-
무려 5cm정도임
-
ㅋㅋㅋ
-
예체능이고 반수생입니다 체대인데 좀 높은 학교를 원해서 반수하려고해요 작수 성적은...
-
YAHO 3
예후
-
횽아들 잘쟝ㅅ 4
난잘거지렁
-
흐어어어어ㅓ어엉
-
하이샵님 Goat 10
전글 애니 이름 찾아주심..
-
고등학교였다면 절대 불가능했을 풍경인데 그 짧은 시간만에 이렇게 상황이 손바닥뒤집듯...
나중에 풀어보겠습니당
넵
아놔 계속 풀어도 f(0)=4 f(1)=6 f'(1)=0 나오길래 문제 잘못만들줄 알았는데 수정하셨넹....
ㅠㅠ...
2222222 ㅋ
쪽지 답좀;;
답장 드렸어요
문제 짱 좋구요 진짜 님덕분에 수1 수2 복습 제대로 하고 있습니다. 감사해요.
그런데 저는 (나) 조건 생각않고 문제를 풀었는데 결국 f(x)를 구해보니 (나)를 만족했는데 왜일까요...?
실근의 합이 양수가 되는 경우도 존재합니다 ㅎㅎ
아 그러네요 ㅎㅎ 너무 일반화해서 푼것 같아요
8인가..하 돌겠네
아니에요
F(x) 뭐나오셨나요?
쪽지 답 부탁드려요 ^^
보냈습니다
94아닌가여...?;
맞아요 ㅎㅎ 문제 어떤가요?
제가 이렇고저렇고 할 실력은 없지만 문제 정말 잘 만드시네요 ㅎㅎ 동생한테 꼭 풀어보라고 해야겠습니다
감사합니다~
94 나오네요. 110615님 문제는 많은 생각을 하게 하는군요.^^
그래프 개형과 lim조건을 통해 x=0일 때, 극대값을 가질 수밖에 없는 상황이 만들어 지는 것에서 감탄했습니다.
감사합니다~
간단하게 풀이 적어봅니다.
f(x)=x^4+ax^3-(2a+1)x^2+(a-2)x+4에서 g(t)의 그래프 개형을 파악하기 위해서 f(x)를 미분합니다.
f'(x)=4x^3+3ax^2-2(2a+1)x+(a-2), f'(x)=0인 점을 찾으면, x=1인 점에서 극값을 가진다는 것을 알 수 있습니다.
따라서 f(x)에서 찾을 수 있는 점은, f(0)=4, f(1)=2, f'(1)=0
이제 조건 (가)와 (나)를 충족하는 함수f(x)의 그래프 개형을 찾아야 합니다.
여기서 (나)가 힌트가 될 수 있는데, 도함수의 실근의 합이 음수라는 조건으로 인해 x=1인 점이 사차함수의 가장 오른쪽 극값이 될 것이라는 것을 추론할 수 있습니다. 즉, 오른쪽 극솟점이 됩니다.(f(0)이 4인 것도 한 이유입니다.)
이제 x=0인 점에서의 함수 판정이 중요한데, 이는 조건(가)를 통해 추론할 수 있습니다. g(t)가 t=1,2,3,4인 점에서 미분불가능한 점의 갯수 합이 10이라고 합니다. 왼쪽 극솟값은 알 수 없지만, x=0에서의 함수값이 4이고, (단,-)조건을 통해서 g(t)의 그래프를 그리게 되면, t=4인 점에서 미분불가능한 점의 갯수가 바뀌야 하는데, 이를 만족하는 함수f(x)는 x=4에서 극댓값을 가지는 함수여야만 가능합니다.
따라서, f'(0)=a-2=0이어야 합니다. a=2이므로, f(x)=x^4+2x^3-5x^2+4가 됩니다.
f(3)=94
잘푸셨어요!!
이 그래프 개형이 왼쪽이 처진 4차 그래프 맞나요?
네
그리고 꼭 0에서 극대값을 가져야하나요? 그래프 개형상으로는 판단이 잘 안서는데.. 실례가 안된다면 설명 부탁드려도 될까요?
네 0에서 극대를 가져야만 주어진 모든 조건을 만족합니다
풀긴 했는데, x가 0에서 극댓값을 가지는걸 논리적으로 설명을 못하겠어요
풀이 적게 되면 올릴게요~
혹시 풀이는 없으신가요??
아직 적어놓은건 없네요 ㅜㅜ
답 94죠? 이 문제도 좋네요. 처음에는 (가) 조건만 보고 11 가형 24번같은 문제인줄 알았는데, 난이도는 좀 더 쉽긴하지만 좋은 문제네요. g(t) 우극한 조건이 f(x)가 0에서 극댓값을 가지도록 만드는게 괜찮네요. (가) 조건 염두에 두고 그래프 그리다보면 그걸 깨달을 수 있었던 점이 좋았던 것 같습니다, (나) 조건 때문에 1에서 오른쪽 극솟값 가지는 것도 그렇고..