[110615] 미분
게시글 주소: https://orbi.kr/0006065525
오래전에 올린적 있는 문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정시 인설의 수능 2개틀림 수학,화1,생1 할 생각임
-
그래서 자고 일어나니 2시라 방금 아침겸점심겸저녁으로 한솥 도시락 먹음 대체 무슨 일이 일어난거지
-
인강 0
솔직히 말하면 인강은 과탐이랑 뉴런정도만 들어도 괜찮을까요 나머지는 독학으로...
-
지1 공부량 0
재수생이라 시간은 많고 오지훈 풀커리(오즈모고포함) + EBS수특수완봉투모고등?...
-
지인선 n제 2
드릴이랑 비교해서 난이도 어떤가요? 드릴3,4,5 거의 다 풀어서 하나 사려고 하는데
-
어휘 3개틀림 아
-
왜 우리학교는 0
자꾸 학생표본 수준과 맞지않는 부교재를 골라서 이상한문제를 내놓을까..
-
현재 시야 ㅇㅈ 6
예예~~
-
이동석(2010) 중세국어 어기 `번`의 단어족...
-
대학 탐방가는데 저녁쯤 될 것 같아서ㅜㅜ 건물 밖만 버고 올건데 몇시까지 열려있는지...
-
씻으러 가자 4
-
성적 인증 https://orbi.kr/00070673396/ U CAN DO식...
-
넵
-
그것마저 째고싶다 아 허리 너무 아픈데 ㅅㅂ..
-
본능이란 대단하네
-
CC면 투투 해도 안 된다는 말이있어서
-
몇등급부터 5
유베인가?
-
시발점 개념 0
시발점에 모든 개념 다 들어 있나요?
-
이번년도에보는 2026수능 정시 내신반영 학교 어디어디에서 정시에 내신도...
-
노트북(롤 프레임 30나오는 똥컴)있는데 터치노트북을 사는게 나을지 고민됨.....
-
ㅈㄱㄴ
-
독해력테스트ㅇㅈ 6
아이고 어쩐지 4등급이더라 여기서 할수잇음뇨
-
내일 나랑 8
잠실 애니메이트에서 옯만추 할 사람
-
아나 헤드샷 ㅇㅈㄹ
-
저 새터에서 무사히 돌아옴
-
양식이요
-
대체 언제부터 안나오는거야 28번 국룰아니었어..
-
어떤가요???
-
샀어요 0
제 특성 상 독학서랑 강의를 병행하는게 나을듯
-
사람들이랑 못 어울리겠지 슬프다
-
나 존나 힙찔이로 보겟지…….. 그냥 스포츠나 해야지 응
-
금딸 6일차 2
후..
-
어라 그냥 마스터까지 켠왕해야겟다
-
한 달 동안 안올리시네
-
반박시 죽여버린다
-
쇼메뭐임? 1
왜갑자기 동부급미드됌...? 베릴까지왔잖아....
-
유스로 우승은 많이 힘들어보이네요 스프링 전승우승 어케한거냐 ㄹㅇ
-
광고도배
-
뻘글 2
진짜 아무 내용도 없는 글임
-
할까 말까 고민됩니다 11
8연딸 이거 해도 될까요..
-
중요한거 하러감 2
애니 시청
-
안녕하세요. 합격자 후배님들! 저는 인하대 영어영문학과 22학번입니다. 인하대에...
-
금테까지 13명 5
-
퇴근 0
개피곤
무도보고와서 풀어봐야지 ㅎㅎ
굿굿 ㅋㅋ
5?
네 ㅎㅎ
문제 어떤가요?
5
네 맞아요 ㅎㅎ
너무 직관적으로 푼것같은데 어떻게 논리적으로 풀어야하나요?
어 저도 5 나옴요
정답
으아... 5 나왔다 .. !
처음에 모든계수가 정수라는 조건이용해서 (x+루트2)제곱 생각해내긴했는데
f(루트2)자체가 정수 아닐수도 있을것같아 의심하긴 했지만 계속 풀었더니 5가 나왔네요.
왜(x-루트2)가아니라(x+루트2)인지설명해주실수있나요^^;
화... 화나셨나요?..;
네??ㅋㅋㅋ전혀아니에요ㅜㅎㅎㅎ
맞아요 ㅎㅎ
저도 5요ㅎㅎ
네 ㅎㅎ
항상 좋은문제감사드립니다 음...그런데 조금아쉬운점이있다면 이제는 초월함수에도
손을 대주시면안될까요ㅜㅜ 요세 트렌드는아무래도 초월함수니까...
이분 문과
5가 나오긴 했는데...풀이가 엄청 직관적이라 해야하나...2차항은 -4인거는 쉽게 수식으로 해서 풀었고 1차항은 -3차항×6인 것도 잡았는데 3차가 왜0이여야 하는지를 설명을 못하겠네요;;;
답이 5가 나왔는데요 a가 0인게 맞나요?
x네제곱 - 4x제곱 +5 ...
와.. 이건 .....엄청나군요.....감동......
f(x) = (x-루트2)^2 ( x^2 + ax + b) +c 라고 두면 .
계수가 정수라는 조건에 의해서 a = 2루트2 , b=2가 나옵니다.
전개하면 x^4 - 4x^2 + 4 + C
이때 극대값과 극소값의 합이 6이므로 C = 1이됩니다. 아까 푼 기억이라... 아마 맞을거에요....
하지만 처음풀때는 이렇게 안풀었다는게 함정...
부정적분했을때 계수도 모두 정수고
최솟값은 극솟값에서 나와야하기때문에 a=0이죠
도함수 =4(x-루트2)(x+루트2)(x-a)
저기 110615님 저번에 올리셨던 미분 기출 변형 문제는 삭제하신 건가요?
네 다시 올려드릴까요?
그거 캡쳐해서 풀었는데 답이 궁금해서요. 아 그리고 님 문제 항상 잘 풀고 있습니다. 감사합니다.
감사합니다~
논리적으로 접근했을 때, 21번은 4차함수의 특징을 공부하기에 적합한 문제라고 생각합니다. 좋은 문제 감사합니다.^^
sol)
f(x)가 최고차항 계수 1인 4차함수 f(x)=x^{4}+kx^{3}+lx ^{2}+mx+n이고,
이를 미분하면 f'(x)=4x ^{3}+3kx ^{2}+2lx+m
조건 (가)에 따르면 f'(루트2)=0
즉, 홀수차항의 합과 짝수차 항의 값이 각각 0이어야 함.
따라서, f'(x)=4x(x-루트2)(x+루트2)=4x ^{3}-8x (왜냐하면, 극대점이 정수, 우함수)
이를 적분하면, 원함수 f(x)=x^{4}-4x ^{2}+C
이제 조건 (나)를 이용하여 적분상수C를 구하면 ,최솟값=f(2)=4-8+C, 극댓값=f(0)=C
최솟값+극댓값=2C-4=6 따라서 C=5
원함수 f(x)=x^{4}-4x ^{2}+5
f(2)=16-16+5=5
네 잘푸셨어요!
정정) 최솟값=f(루트2)=4-8+C
굿 ㅎㅎ
a=±(3/4) 일 땐 왜 안되나요?
a가 정수라는 조건 때문에요 ㅋㅋ
5 ! ㅎㅎ
네 맞아요 ㅎㅎ