질문드립니다.
게시글 주소: https://orbi.kr/0006056237



제가 이문제를 코사인 제2법칙으로 해서 풀었는데 코사인으로 범위를 구하기가 엄청 힘들더라고요 일단 루트이분의 일보단 작은건 알겠는데 각 apb가 몇도인줄 모르는사랑태에서 어디서 부터 어디까지인지 범위를 구해놓고 미지수를 풀어야되는데 한창 생각하다가 답지를 보니 tan 로 풀어놨더라고요 tan는 그래프자체가 90도 이전으로 한없이 1보다 크게 수렴하기때문에 범위가 휠씬더 간단하게 찾게 되어있어서 좋더라고요
질문들어갑니다. 첨부파일처럼 코사인으로 풀어서 어쩡쩡하게 풀어서 답은 맞았습니다. 그러나 정확한 범위를 잘모른체 풀었다면 잘못된거 아닐까요. 이문제에서 코사인으로 푸는거보다 탄제트로 풀도록 만들어놓은겁니까? ㅠ 도와주십시요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐 백분위 98 vs 과탐 백분위 96 이면 과탐가산점때문에 과탐이합격함?? 아님...
-
의문사<<<나말하는건가 12
뭐노
-
물론 적당한 목표에 적당한 대학에 적당한 과면 상관없지만 목표가높으면 예를들면)...
-
tim 2
사랑합니다 노래 들어보셔요 좋음
-
사회문화 기출 0
평가원만 모아둔 문제집있나요
-
임정환 서브노트 1
어떤 용도이고 유용한가요?
-
TIM질렀다 2
모고 7개 하프모고 7개 김승리식빨더텅 다합쳐서 6만3천인데 안살이유가 없었잖아 생각해보면
-
교차세대보다 대학가기 훨쉬웠나?
-
기출이 너무 중요할 거 같은데 그래도 n제 넘어가야 하나요..ㅜㅠ 고2 모고는 3요..
-
한자 교재 추천 9
마법천자문 이거면 다 끝나는데 뭔 ㅋㅋㅋㅋㅋㅋㅋ
-
롤붕이라 울었다... 사는 김에 수능도 다시 보고
-
전문직 시험 준비하시는거면 몰라도 수능은 총무 진짜 안 맞는 것 같아요 일단...
-
임정환 윤성훈 0
윤성훈T 풀커리 탈건데 일단 올라온 강좌는 다 들었습니다. 근데 불명보다 림잇이...
-
입학 선물세트 ㅇㅈ 10
-
개형 잘 찾아서 식 세우면 (3x변곡점...
-
ㅈㄱㄴ
-
커리가 인강 커리 말하는건가용 아직 메가 패스나 패스들 없는데 사놓는게 좋나용
-
제발 알려주실분 16
누구말이맞는거같음? 고작 대만식당메뉴판읽기하려고 한문을 정규교육과정에...
-
손창빈선생님 그동안 정말 감사했습니다.
-
소고기 4
아빠가 소고기 사오실듯 아싸
-
작수 언매는 다맞긴했는데 수능 끝난이후로 언매 아예안봐서 다 까먹어서요.. 솔직히...
-
월간조정식 0
어려운데 정상일까요
-
아니승리형시발 6
TIM모의고사가 있다길래 모고랑 허슬테스트만 사고 튈려했는데 교재를 올인원...
-
플어봐야지
-
현역 커리 0
아직 없음
-
난 지구 사문의 3배 공부하고 고2모고 4 받았는데 1
지구 꿀 아님
-
일주일만에 어떻게 사람이 이렇게 변하지 ㄷㄷ
-
ㅇㄱㅈㅉㅇㅇ? 13
이건 뭔 신박한 콜라보냐 젠장 김승리 이젠 담요단에 이어서 이대남까지 정복하는구나
-
고대 문사철보단 낮은걸로 압니다
-
아이폰 일반살걸 1
120체감 너무언되네
-
아니,,, 지금 찾아보기 귀찮아서 그렇지,,, 예전에 과탐관련글에서 물화생지중에...
-
현역 커리 8
국어 강기분, 새기분 6월까지 수학 기출, N제, 실모
-
날 의대로 보낸 사람이랑 위치를 지방으로 만든 사람의 콜라보...?
-
평형반응보다 그냥 일반 반응이 더 어려운데 비정상인가요? 평형은 20번도 좀 하면...
-
VS메타임? 4
.
-
어지간한 작년 사설 22번 이상인듯;; 개형뽑기도 ㅈ같은데 마지막 식 처리하는것까지 벅참
-
혼밥은 힘들다 0
ㅇ
-
수학하기싫다 1
오늘이미5시간반을했는데더해야하는게참으로안타깝구나
-
ㅈㄱㄴ
-
구디에서 snl 촬영중인가
-
커리 추천좀 6
인도커리 스테판 커리 커리어 하이
-
정석민쌤 4
유대종 독서 듣다가 안맞는거 같아서 정석민 넘어가려는데 학습 방향성 잡아주실수 있을까요?
-
직접하면 또 6등박고 하기싫어짐....
-
국어 새기분 3월안으로 마무리 기출은 새기분거 스스로 복습 분석 진행 브크...
-
이거 ㄹㅇ임??? 23
아니,,, 물리가 씹고여서 2문제틀려도 3등급으로 내려갈만큼 제일 ㅈ같다고 들었는데...
-
살짝아쉽네.. 아수라 시즌에 콜라보했으면 ㅈ간지났을거같은데..
-
트랜지스터 얜 빈출선지 거의 외우다시피 풀어서... 사설 이상한거 나오면 짤없이 틀리더라
-
걍 점수가 깎이고 끝??
-
현우진 양승진 1
둘이 시너지좋ㄴ음? 뉴런듣고 양승진 기출코드 들을라는데 뭐 상충되거나 그런거 없겠져?
너무 심오하게 생각하지 말고, cosine으로도 풀렸으니 이번에는 tangent로 접근하는 안목도 길렀다고 생각하시면 될 것 같습니다.
근데 코사인값으로 접근하니깐 범위가 어떻게 되는지 잘모르겠더라고요 탄젠트로하면 저렇게 딱떨어지는데... 코사인값으로한다면 범위가 정확히 어떻게 되나요 어쩡쩡하게 푸는게 맘에 안들어그럽니다 ㅠ
만약에 각 apb 각도가 90도는 넘지않는다라고 가정하고 코사인값을 범위를 가정하고 풀었을때 답이 엉키더라고요 정확하게 각 abp 각의 범위를 모르니깐 코사인값을 쓰는게 위험할수도있겠다는생각이들긴하는데 혹시 코사인으로 푼다면 제대로된 범위를 알수있을가요?
각 PAB는 무조건 둔각이죠? 만약에 직각이라면 P가 xy평면을 뜨게 됩니다. 그러므로 APB는 90도를 넘지 않는데요. 여기서 어떤점이 엉킨다는 것인가요?
문제에선 각 apb를 물어봤어요 ㅠ apb는 무조건 예각일수밖에없지않나요? 그림을 연장선을 그어서 그어보니 각 apb가 90도는 절대 넘지않는다는걸 알았고 부등식을 세워서 풀었는데 엉키더라고요
그에반해 탄젠트로 풀게되면 45도 이후로 1보다 항상 크게끔 수렴하게되니깐 휠씬더 범위를 정하기가 엄청쉬었고요
만약에 abp 가 90도를 넘길수도있고 아닐수도있고 그러니 apb가 45도보다크긴한데 도대체 어디까지 클것인가 그걸 잘몰라서 범위를 잘못세우는데 탄젠트는 45도 이후로 항상 1보다 크니깐 범위가 딱 정해지잖아요 이부분에서 엉킨거같아요
그러니깐 각 코사인 abp가 45도보다 크거나 같은데 어디까지 큰지를 잘모르는거죠 그러면 무작정 45보다 크거나 같다고 문제를 푸는건 잘못된거아닐까요 정확한 범위를 구할수없어서 저문제에 tan로 풀어놓은거같기도하고 정확한 범위를 구할수있으면 어떻게 구하는지 가르쳐주시면 감사드려요 ㅠ
0
그렇게 나오는데 0보다 클때는 범위가 엉켜요 범위도 안나오고요..
접근이 틀렷다고 생각했는데 그냥 코사인 abp가 45보다 크다고 놓고 푸니깐 답은 풀렸는데 정확한 범위를 모른체 풀어서 어거지로 맞춘것이지요 그러나 탄제트로 풀면 정확한범위에 딱떨어지다라고요
0
네네 그거 말하는겁니다.근데 무작정 저렇게 90도보다 작다고 나두고 푸는게 옳게 푸는것일까요? 만약에 말이죠 90도보다 작을수도있지만 실제론 80나 75도보다 작을수도있자나요
아 무슨말인지 이제 알았네요. 저식에서 좌변을 k로 둘때
k루트(x^2+y^2+4) * 루트 (x^2+y^2+144) =< x^2+y^2+24
이게 성립하는 k가 어디까지냐가 중요하냔거죠?
잠깐 님 논리에 저도 고민했었는데
문제에서 45도 이상인 범위를 다 구하라고했죠?
그런데 부등식에서 사실 90도라고 설정한 것도, 직관적으로 APB가 90도를 넘을 수 없으니까 크게 본 것이죠. 실제로 90도보다 크다고 하고 음수로 넘어가도 성립합니다. 단지 이 문제에서는 45도보다 큰 범위 구하는 것이 중요합니다.
cosABP가 왜 나오는지는 잘 모르겠네요.
좌변은 항상 성립하는 식이란거고,
우변을 복잡하게 전개해서 풀린다면 그것으로 끝이긴한데..
cos APB는 저렇게 해서 코사인 제2법칙으로해서 각 APB가 45로 해놓고 미지수풀어서 그각보다 클때를 비교하기위해서 그랬어요
그냥이다님 시간이 너무 늦었어요 질문드리기가 정말 죄송하네요 ㅠㅠ 감사합니다 혹시 제가 내일 다시 정리해서 쪽지보내도 될까요? 시간되실때 답변해주시면 정말감사드리겠습니다 ㅠ
요약하면 문제에서는 45도보다 큰 범위에 대해서만 물었지 몇도보다 작아야한다는 조건이 없었으니까 우변만으로도 식은 충분하고, 좌변식을 잡은 이유는 직관적으로 무한정 커질 수는 없고 90도보다는 작다는 것을 설정한 것이죠.
좌변은 0보다 큰데 범위가 안나옵니다. 우변은 나오고요 우변만 풀었을시 답에 있는 그림으로 일단 답은 맞췄습니다.