[미적 자작 문제] 평균변화율의 극한
게시글 주소: https://orbi.kr/00060362517
함수만 다항함수로 바꾸면 수2 문제이기도 합니다. 지수함수 e^x에 대해 d(e^x)/dx=e^x이고 a^x (a>0, a<>1)에 대해 d(a^x)/dx=a^x*ln(a)임을 적용하면 확률과 통계 선택자분들도 푸실 줄 알아야하는 문제이니 시도해보시기 바랍니다!
문제는 간단한 평균변화율의 극한을 묻고 있습니다. 처음에 공부할 때 평균변화율의 극한이 순간변화율 (미분계수) 인 것은 알겠는데 미분가능하지 않지만 한 쪽만 바라보면(?) 미분 가능한 두 함수로 구성된 함수의 경계에서 평균변화율의 우극한과 좌극한을 해석하는 데에 어려움을 겪었던 것이 (아까 저녁 먹다가) 생각나 얼른 하나 작성해봤어요 ㅋㅋㅋ
단, e는 2.71...의 값을 갖는 비순환 무한소수이며 ln은 밑이 e인 로그를 나타냅니다. <>는 엑셀에서 등호에 슬래시 그은 것 (=/) 을 나타내는 기호여서 사용했습니다. (보통 =/로 표기했는데 오늘 <>로 표기한다는 것을 배워서 사용해보고 싶었어요 ㅎㅎ)
+ 깔끔한 문제는 아닙니다! 함수 f(x)가 실수 전체의 집합에서 연속이라는 조건도 문제 푸는 데에 딱히 필요하지 않죠. 깔끔하게 만들 줄 알았다면 저도 강사나 컨텐츠 제작자가 되었을테니,, 재미로 풀어주시면 감사하겠습니다! 또한 (나) 조건에 글씨가 애매한 것 같아서 우변은 {xㅣf(x)=e^(-x)}를 의미합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
님들 학고재수 하면 다음 대학교에서 국장받을때 불이익있음? 5
국가장학금이 학점 안나오면 못받음 (1학년 1학기는 예외) 1. 나는 입학성적...
-
씨발좆같다 6
씨발제일비참할때가같은거반복학습할때랑열심히했는데성적이안오를거같을때아니야?씨발3월에시작했...
-
개씨발
-
남잔데 임신가능??
-
왤케 추천도가 높은거임? 드릴 설맞이 이해원 하사십 어려운n제는 이정도로 풀었는데...
-
ㄹㅇ..
-
연습중인데
-
잇올팁 공유 6
너무 힘들때 쉬는시간 되기전 10분부터 자면 25분 수면 가능! 그러면 잠도 안오고...
-
친구가 어렵다해서 걍 풀어봤는데 (가) 조건으로 a 1,2,3,4,5,6pi...
-
그나마 이런 빌런들이 불태울때 존나 까면서 그나마 잠깐이나마 덜 우울할수있음..
-
왜 이렇게 많아 ㅋㅋㅋㅋㅋ 괜히 불안감만 커지네요 ㅋㅋㅋㅋ 내거에요 근데 ㅠ
-
좆같은말 하면 쳐맞아야지 ㅋㅋ
-
누가누가 잘찍나 38
21세 여자가 얼굴이 붉어지고 목소리가 떨린다며 병원에 왔다. 어려서부터 다소...
-
역시 정상화는
-
커뮤에서 하고싶은말 다 하고 살수있음 ㄹㅇ..
-
지방이 1
졸귀
-
그러니까 내 지방 좀 지워다오
-
저는 13,15 기하는 28 30은. 걍 벡터 좋아해서 재밌게 푼듯
-
ㅇㅎ
-
오르비 여러분, 여러분은 지금 도를 넘었다는 생각 안 드십니까? 12
평소에 오르비를 눈팅만 하던 사람입니다만 도저히 작금의 상황에 개탄을 금할 수가...
-
[Web발신] 1
너는나를존중해야한다나는발롱도르5개와수많은개인트로피를들어올렸으며2016유로에서포르투갈을...
-
안녕하세요 9
전기쥐입니다
-
수학 실모 추천 좀 12
6모 보기전에 실모2개정도 풀려고 하는데 추천부탁드립니다 닌이도는 적당했으면...
-
우리 고등학교는 미개한 애들이 많았음
-
내년에 수능치는 대깨설 09년생입니다...지금까지 화1을 계속 잡고 있었고 등급도...
-
내 그곳 검 ㅇㅇ
-
결국 그 사람한테 전해지는 진심이 있을때 성공하더라 꼭 좋은 사람이면 잡아보려고 노력하시길
-
걍 저지랄로 저능해졌음 ㅋㅋ
-
저격을멈춰주세요 0
N수(망함) 명문대(아님) 지방(살았었음) ㅅㅂ럼들아 3수 지역인재 의대가...
-
제가 실력 딸려서 그러는 지 모르겠지만 29번은 계산 범벅입니다 하지만 30번은...
-
드립치고 싶은데 참아야겠지
-
공부에 집중해라
-
너무 그 분을 좋아한 나머지 성적도...
-
너는 저능하고
-
비대면으로 들을건데 현강 진도는 수2 끝나고 수1들어가고 있음 근데 수2강좌도...
-
개추가와바박 1
개웃기네 ㅋㅋ
-
ㅋㅋ 공부할때 썰만 들어야
-
치대 정시로 2
어느정도 받아야 하나요 지방 치대기준으로요 화작 미적 사문 생명인데 백분위 95...
-
예쁜 분들 12
-
연애 해본 적 없고 wwe가 난무하는 지방에 거주 중인 도태 불가촉천민입니다
-
ㅇㅇ
-
오이카와 국적 4
아르헨티나 좋아하는거: 우유빵
-
근데 ㅂㅅ같이 생기고 사회성도 ㅈ박으면 연애 못함
10?
10, 정답!
확통이라 지수함수 미분을 어떻게 하는지 모릅니다ㅠㅠ
e^x를 미분한 것이 e^x 그대로 인가요??
네 맞습니다! 증명은 지수함수와 관련한 극한을 공부하셔야 도함수의 정의로부터 유도할 수 있는데.. 간단히 설명해보자면
먼저 무리수 e의 정의는 lim x->0 (1+x)^(1/x) 입니다.
(e^x)'=lim h->0 (e^(x+h)-e^x)/h = lim h->0 e^x(e^h-1)/h = e^x * lim h->0 (e^h-1)/h 에서 e^h-1=t로 치환하시면 h=ln(t+1)이니까 e^x * lim t->0 t/ln(t+1)로 극한식을 바꿀 수 있겠죠!
여기서 lim t->0 ln(t+1)/t = lim t->0 ln(t+1)^(1/t) 임을 생각할 때 lim t->0 (t+1)^(1/t)=e이므로 lne=1을 얻을 수 있습니다. 따라서 lim t->0 ln(t+1)/t = lim t->0 t/ln(t+1) 임을 활용해 e^x * lim t->0 t/ln(t+1) = e^x 를 얻어낼 수 있습니다.
참고로 e는 2.71..로 이어지는 (마치 pi=3.14...처럼) 비순환 무한소수이며 ln(x)는 log_e_x 입니다. 밑이 10인 로그인 상용로그에서 10을 표기하지 않는 것처럼 밑이 e인 로그 자연로그는 log_e 대신에 ln이라는 표기를 사용합니다, logarithm natural의 줄임말이라 ln이라고 알고 있어요! (여담이지만 algorithm과 logarithm의 'rithm이 비슷하군요,, 어원에 공통점이 있으려나요)
와 친철한 설명 감사합니다 한완수같은 개념책 읽는 느낌으로 봤네요 ㅎㅎ 이제 문제 도전해보도록 하겠습니다
넵! 문제 자체는 지수함수의 미분법만 알면 수2이므로 천천히 고민해보시기 바랍니다. 아마 작년에 친구들이랑 서로 문제 같이 고민하다가 이창무 선생님의 '문제해결전략'이라는 책에서도 봤던 상황 같네요
저도 답10으로 딱떨어지게 나왔어요 그런데 궁금한건 범위가 저렇게 잡힌 이유가 무엇인가요??
이유 없습니다! x<-3과 x>3에서는 f(x)에 대한 정보를 알 수 없다.. 그치만 실수 전체의 집합에서 연속이다 정도를 생각해보자는 뜻이었어요 ㅋㅋㅋ
애초에 x=0 주위만 바라보면 되어서 그 근처에 대한 정보만 주고 싶었습니다, 큰 의미는 없어요!
위의 유도 과정에서 lim x->a f(g(x)) = f(lim x->a g(x))임이 사용되었는데 이는 둘 다 연속일 때 가능하다.. 정도로 받아들이시면 될 듯합니다 (22 한완수 수1/수2 중 함수의 극한 부분에 있던 것 같은데 이때도 엄밀힌 다루지 말자 했던 것 같네요)
아 그렇군요ㅋㅋㅋㅋㅋ문제 좋네요 3점급인데도 생각할 거리가 있네요
흔한 소재입니다 ㅋㅋㅋ 저도 작년에 한성은 선생님 문제에서 접했던 상황이에요
10! 그냥 미분때리고 대입했는데 정확히는 평균변화율 극한 정의로 계산해야하는건가요?
미분이 맞습니다! 다만 함수 f(x)는 x=0에서 미분가능하지 않기에 f'(0)이라는 표현을 사용할 수 없고 좌극한과 우극한을 고려할 때가 각각 y=10^x와 y=e^(-x)의 x=0에서의 미분계수를 고려할 때와 같음을 이해하자는 것이 출제 의도였습니다. '미분계수의 정의는 한 동점이 한 정점으로 한없이 가까워지는 상황이다'라는 문장을 기억하자는 것이죠 ㅎㅎ
한완수볼 때 분명히 기억하려고한 내용인데 다시 알려주셔서 감사합니다! 수능끝나고나니 다시 또 기억나는게 없네요ㅠㅠ
원래 며칠 공부 안하면 잊는 게 사람이죠 ㅋㅋㅋ 풀어주셔서 감사합니다!
평균변화율의 극한, 즉 미분계수에 대해 공부하다보면 f'(0+)이나 lim x->0+ f'(x)처럼 도함수의 극한이 결국 평균변화율의 우/좌극한 아니냐는 생각이 들 수 있는데 엄밀히 말하자면 아닙니다. 미분가능성은 도함수의 함숫값 존재 여부를 확인할 수 있는 정보이지 도함수의 연속성은 알 수 없기 때문이죠.
이와 관련해서 '다르부의 정리'를 유튜브나 구글에서 찾아 학습해보시면 재밌지 않을까 싶어요! 또한 다항함수는 왜 실수 전체의 집합에서 연속이고 미분가능하고 그 도함수까지 미분가능하며 무한 번 미분가능한 함수이지도 함수의 연속의 성질과 미분가능성을 활용해 증명해보시면 재밌는 시간이 되지 않을까 싶습니다 ㅎㅎ

자세한 설명감사합니다! 작년에 재미로 수능이 아닌 수학에 대해서 이것저것 공부해보려고했는데 입시판 한번만 더 들어와보기로 결정했어서 이번 시험기간만 끝나면 다시 또 수학공부해봐야겠네요ㅎㅎ앞으로도 좋은 글 부탁드리겠습니다
오 수능이 아닌 수학 흥미롭네요.. 저도 이번 시험기간 끝나면 겨울 방학에 해석학 등등 공부해봐야겠어요 ㅋㅋㅋ 글 읽어주셔서 감사합니다!