6월 모평 수학 14번 질문
게시글 주소: https://orbi.kr/00058972164

함수 g(x)가 삼차함수이니 g의 이계도함수도 연속이어야 하는 거 아닌가요? 그래서 g''(x)=0 이어야 하는게 아닌지... 그렇게되면 g(x)가 x 세제곱이 되는 경우가 유일해서 문제 풀이가 아예 안되는데 어디서 제 생각이 잘못되었는지 모르겠어요 ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
갑자기 존나 물기있는 이대녀 된것 같은데 우짜노;
-
츄하이 까야지 0
나를 말리지마~ 원래 화요일은 강제로 오프데이나 마찬가지란 말씀. 암암
-
콘서트 가고싶다 0
7월 25일에 콘서트 하는데 갈까요 말까요 ㄹㅇ 가고싶은데.. 하루 안한다고...
-
인종차별이야
-
발에 물 다 튀었네
-
현역 때 지구 사문 하고 재수 때 9모 전에 사탐런 했는데 삼반수 논술 최저 맞춰야...
-
오랜만이에요 3
신체적으로나 육체적으로나 많이 힘드네요 결국 잘 될거라 믿어요
-
나트륨 크래프랑 칼륨 크래프랑 교차하는 부분까진 막전위가 증가해야 하는거 아닌가요...
-
카페에서 7
커어어어어어어 하면서 잔것 같은데 어쩌지..음료 시켜놓은거 다녹앗네 이제 돌어가야하는데
-
솔플하기에 ㄱㅊ? 분위기 안좋다는 얘기 있는데 혼자 다니면 신경쓸 정도는 아님?...
-
한우 듬뿍 국밥 8
맛있어요우
-
24시간의전사 5
화하하하하학 렛츠고
-
다 까먹음 걍 해설보고 발상정리하다보니까 원래 실전개념 뭐 배웠는지도 모르겠음
-
지방 일반곤데 애들 김범준 왜이리 좋아하냐? (무슨 비하의 의도 그런게 아니라 그냥...
-
놀아줘 5
-
그래
-
근데 그거 먹으면 당이 많아서 그런지 오히려 졸림.. 그래서 노랑으로 갈아탔음
-
생윤 동사 같이 듣는애한테 멘티 제안했다가 개까임 ㅋㅋ 2
두구보자 ㅡㅡ 성적 어떻게 나오는지
-
?
-
국어 ebs는 더 유기해야겠다 걍 작수 연계체감 현대시 하나만 받고도 수능 잘봤는데...
-
지눌과 의천의 공통점 선종의 수양 방법과 교종의 수양 방법을 모두 갖추어야 함 이거 맞나요?
-
물리 하다가 도저히 안 될거 같아서 사탐으로 바꾸려고 하는데 제가 역사 배경지식이...
-
적당히 먹으려고 1
와퍼 주니어 삼..
-
지금 하루에 과탐 4~5시간 수학 6~7시간정도 잡고 하고있는데 드리블 킬러에...
-
요즘 인생의 낙은 10
토요일 밤에 친구들이랑 옵치 5인큐 돌리는거임 너무 재미씀
-
12-3월<<< 5
이때 수학 등급역전 쌉가능한 시즌인듯 ㄹㅇ 저도 3개월동안 폐관수련했더니 처음보는 등급이 나왔음
-
주변엔 6모이후부터 한애들도 있고 그런데 지금부터라도 빨리 시작해야함?? 미적1임...
-
D-205 0
수학 2단원(원순열~중복순열) 기출 20문제 국어 내신 2지문 분석, 문제풀이
-
부모 둘다 공부와는 거리가 먼 (해도 안돼서 포기햇다고함) 집 자녀가 두돌전에...
-
졸업할때까지 길 못외울거같음
-
근데 큐브에서 풀어줄라다가 설명할 자신이 도저히 없어서 gg침..
-
직접 하긴 귀찮아서 그냥 남에꺼 보고 싶다...
-
기출 어느정도는 다 아는데 좀 다시 한번 싹 정리하고 싶어서.. 걍 무난하게 수분감 ㄱ?
-
혹시 수학 약해서 몇달동안 수학만 하신 분 계심? 20
한달반동안 거의 수학만 해도 되려나
-
크보 인기 많으니까 편승할라는 건지 모르겠는데 크보팬들 데려다가 조롱하고 자빠졌네...
-
“게이들은 카리나도 안좋을까”만 올리는건 성평등에 맞지않는것같아서 올립니다
-
[속보] 대법원, 이재명 '선거법 위반' 사건 전원합의체 회부 5
대법원이 이재명 전 더불어민주당 대표의 공직선거법 위반 사건을 재판부 배당 당일인...
-
노래 좋다
-
흠,, 3
군대튀하고 싶군
-
아으 힘들다 2
알파카메일이 되고싶구나..
-
오늘은 자기 질문할 것도 없는데 거기 시끄럽다고 그냥 안간데 난 뭐 같이...
-
근데 전체적으로 빡빡하네여 통합 교육 대두라 문법 문학 비문학 작문 계속 튀어나오니 풀면서 빡빡했음
-
걍 6모 전까지 딴 공부 안하고 거의 수학만하는거 어떰 2
수학이 진짜 제일 급한데 아 사문런해서 사문 개념만 좀 하고 이동시간엔 어차피 공부...
-
스타팅 블록 수2는 별로 배워가는 느낌이 없는데.. 11
8강까지 들었는데 지금까진 뉴런 하위호환 느낌임 수1을 들어봐야 되는 것인가
-
단원별 n제는 드릴 정도만 하고 걍 서킷 브릿지 지인선 이런것만 풀고싶음......
-
서울대 카이스트 학생들 그리고 포공 연공 고공에서는 최상위권 학생 뿐임
-
킬캠보다 어렵다는 최근 실모들보다 옛날 킬캠에서 더 많이 박살남 ㅋㅋㅋㅋㅌ
-
근데요 2
게이는 아닌데 차은우랑 사귈래 하면 사귈듯
-
흠 여기만 타겟팅하는데 뭐가 문제지
-
지들 듣던 강사의견이랑 다르면 또 댓글로 ㅈㄴ 야랄할게 눈에 선해서 이건 그냥 클로즈할까 생각된다
f(0)=0 이고 f'(0)=0까지인거죠
그 뒤론 모름
g''(x)가 f' 어쩌고라고 잘 써 두셨네요
거기까지 된 건데요...?
실제 문제 풀이에서는 f'(0) 이 0 이 아닌 경우도 문제를 풀어야 해서요. g"(0)이 0이 아니어도 가능하도록 문제를 풀어야 답이 나오던데요...

아 잘못 봤네요 순간 착각함..ㅈㅅ..f가 연속이라고만 했으니 미분가능한지는 몰라요 즉 g는 삼차함수라 두 번 미분할 순 있어도 그걸 -f', f'으로 나타낼 수 없어요
결론적으로 0에서 f가 첨점이어도 한쪽에 -를 곱해주는 것으로 g는 미분가능이 될 수 있는 거네요
잘못 알려드려서 죄송합니다
앗 ㅎㅎ 네 감사합니다 잘 이해됐어요!!
f'(x) 가 불연속이어도 g''(x)가 연속일수 있어요
그게 무슨 뜻일까요 ㅜㅜ 문제에서 삼차함수라고 정해놓았으니까 g''(x)가 무조건 연속이어야 하고 그러면 0에서 f'(x) 값도 0이 되어야 하는 거 아닌가요...?? ㅠㅠ
예를들어
f(x) = -x^2 - x (x<0)
= x^2 + x (x>=0)
이라면
f'(x) 좌극한은 -1 우극한은 1이라 0에서 불연속이지만 g''(x) 는 0에서 둘다 1이라 연속이죠
아 이해되었습니다!! 댓글 감사드려요 ㅜㅜ