수학2 교과서 개념 정리, 수능 개념 정리 및 증명
게시글 주소: https://orbi.kr/00058838222
수학2 (함수의 극한, 함수의 연속, 미분계수와 도함수, 접선의 방정식) 관련 내신 개념 정리.pdf
자료 만들다가 공유해두기 괜찮을 것 같아 남깁니다.
<교과서 개념>
1. 함수의 극한
2. 함수의 연속
3. 미분계수
4. 도함수
5. 도함수의 활용 1 (접선의 방정식)
<수능 개념 + alpha>
1. 구간 별 함수의 미분가능성
2. 곱함수의 미분가능성
3. 절댓값 함수의 미분가능성
4. 기함수, 우함수
5. 0/0꼴 극한에서의 미분계수의 정의 활용 (수능 수학 수준에서 로피탈의 정리 대체 가능)
6. 곱함수의 연속성
7. 미정계수의 결정 ((분모)->0일 때 (분자)->0)
8. 미정계수의 결정 2 ((분자)->0일 때 수렴값 0 아니면 (분모)->0)
9. 편미분
10. 대칭성
11. 구간 별 함수의 연속성
+교과서 개념, 수능 개념은 한완수에서 인용한 표현이지만 실제로 <수능 개념 + alpha>에 미정계수의 결정 같은 것들은 교과서 개념으로 분류되었던 것으로 기억합니다. 성질과 관련된 것들을 전자, 그로부터 유도할 수 있는 것들 등을 후자로 확인해주시면 감사하겠습니다!
0 XDK (+1,000)
-
1,000
-
대학 이름빨로 34등급 학생들한테 이름표 장사 하겠잔 거잖아
-
이젠 진짜 얼마 안남았다... AT 최다득점자/ 최다출장자 막시즌 무관으로 보내겠네
-
8ㄷ0 인용 확률 80퍼 4ㄷ4나 5ㄷ3 20퍼봄
-
어쩌다가 보니 수시카드를 메디컬 일부 공대 일부 이렇게 쓰게 되는데 워낙 다른...
-
그렇더고 삭제하진 않겠어 게이같잖아
-
전 방 화장실 샤워할때만 써서 휴지사용량이 거의없단말임.. 근데 넣자마자 한줄은...
-
https://m.dcinside.com/board/exam_new/8392780?r...
-
어렵다 어렵다 말이 많아서 며칠만 특강듣고 기출풀면 수월하게 풀리는지 ㄹㅇ 어려운지...
-
재수생 확통런 0
현재 재수생이고 3모는 수1 스블만 완강하고 수2는 아직 1강도 안듣고 풀어서 공통...
-
담요덮고 형광펜 4종류로 밑줄치면서 듣기
-
몸이 ㅈㄹ남 2
졸라아파
-
크랙팟이 이런뜻인가..
-
룸메도죽이고싶은데
-
시온님 생일기념
-
난 선택만 필요한데 미적확통 다 사느라 공통 2권이 늘게 생겼네 아오
-
어셔의 SBS 인기가요 출연(2004년)훗날 슈퍼볼 하프타임쇼 출연 가수가 왜 여기에?
-
ㅇㄷㄴㅂㅌ
-
갑자기 뭐지다노
-
[속보] 서강대 서귀포캠 건설, 한의예 7000여명 모집 3
연세대, 고려대, 성균관대, 한양대, 중앙대, 경희대, 한국외대, 건국대, 동국대,...
-
이따 봅시다 4
-
여러 의미로...
-
정직한 제목
-
종강해주세요 7
지금당장
-
합이 2분의 파이임을 증명하시요
-
컴공 지망입니다
-
우웅 알겟어
-
고백아닌고백박음 9
ㅈㄴ떨린다 미칀
-
정병호t 원솔+기출->빅포텐하려는데 프로메테우스 수강하지않고 바로 시작해도...
-
ㅈ반고 쌤 근황 16
젊고(20대 중후?) 학생들이랑 소통 많이 하시는 여자쌤인데 ㅈ반고 과탐 가오충들이...
-
아니진짜잇올 1
두교시 남았지만 띄쳐 나가고싶다
-
7분후에 또 나가야되잖아요
-
전문직 준비하는거면 괜찮은데 괜찮은 중견정도 회사 가고싶은거면 연고대 문과 나와도...
-
하긴 전세계가 지피티한테 지브리 해줘 이러는데 과부화가 안 될리가
-
허리아파 ㅠㅠ 0
나이먹어서 그런듯 난 아직 아가인데
-
암머닏 스페이스 암머닏 스페이스 암머 암머닏 스페이스
-
아 0
잉
-
(모두에게 덕코 2000) 캡처 후 댓글 -> 덕코 증정 97
https://atom.ac/books/13231-InDePTh+영어+독해+개념서+2...
-
그만할 때 됐잖아
-
학급 분리수거 담당임
-
중간 9등급박고 자퇴하면 성적에 남나요?
-
으하하 재밋다 2
으하하 수능 수능,, 수능 너무 재밌어 헤헤, 헤 수능 흐흐흐흐흐흐흐흐
-
재수 ㄴㄴ 갓 재수한 애들은 당연히 학교 다니는 것보다 재수 학원이 더 낫겟지 삼수...
-
이 눈팅러들 다 새로고침만 하고 구경만하고있어
-
당대표 윤석열 (옥중) 당대표 직무대행 김건희 사무총장 전한길
-
재밋어요 + AQP가 아니라 AQB가 직각임다
-
하루에 3일치를 나가버렸네요ㅐ
-
강기원 시즌2 2
이번주부터임 다음주부터임? 토요일수업기준
-
야 이 바보들아 4
나님이 팔로우를 받아준다는데 멀뚱멀뚱 뭐해
사랑해요
참고로 9. 편미분 같은 경우 한국에선 대학 미적분학에서 처음 배우는 것으로 알고 있지만, '도함수의 정의'를 활용하는 수2 유형 중 'f(x+y)=f(x)+f(y)+ax^2y+axy^2-bxy+2'과 같은 항등식을 제시해줬을 때 편미분을 활용하면 도함수의 정의를 활용할 때보다 조금 더 빨리 문제를 해결할 수 있어 넣었습니다. 다만 파일에 있는 부분은 도함수의 정의처럼 편도함수의 정의를 써둔 것이고 실제 연산은 밑 영상 참고하시면 좋을 것 같습니다!
https://youtu.be/NKazLqcU-Fk

오래전부터 당신과 같은 보물ㄹ을 기다려왔다우.. 감사합니다논술과 수능을 모두잡는 ㄷㄷ
증명은 한 번쯤 직접 해보시면 학습에 도움이 될 것 같고 결과적으로 수능을 보기 직전에는 자료에 있는 개념들을 활용할 때 '머릿속으로 증명을 훅 훑고 지나간다는 느낌으로' 조건을 잘 확인하고 활용해 문제 풀이 시간을 단축하시면 좋을 것 같습니다. 이를테면 '구간 별 함수의 미분가능성'을 사용할 때 구간 별 함수가 미분가능한지 확인하고, 가능하다면 미분계수의 정의를 쓰는 대신 함숫값이 같음과 미분계수값이 같음을 바로 이용하는 거죠! (그나저나 기본적인 것을 옮겨둔 거라 몇 고2 분들께 도움이 되었으면 했는데 생각보다 많은 분들이 감사를 표해주셔서 신기하네요 ㅋㅋㅋㅋ 잘 활용해주셔서 저도 정말 감사드립니다! 다들 '스킬'에만 의존하지 말고 왜 그런지 '증명'에도 초점을 두셨으면 좋겠습니다)
와 대박이네요... 근데 선생님 혹시 실전에서 로피탈의 정리 사용해보신 적 있으신가요? 아니면 하나의 극한식을 바라보는 색다른 발상 정도로 여기시나요?
고2 올라가며 처음 수2 배울 땐 썼었는데 고3 되고 수능 수학에 대한 이해도를 키워가는 동안은 로피탈의 정리를 사용하기 전에 확인해야할 조건이 까다롭다 느껴서 자료에 있는 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 극한을 처리했던 것 같습니다. 수2 수준에서 로피탈의 정리랑 연산량은 같은데 확인해야할 조건이 조금 더 직관적이고 교육과정 내라는 점에서 마음이 놓였습니다. (개인적인 생각으로 수2는 '미정계수의 결정'과 '미분계수의 정의'에 익숙한 상태를 만든 후 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 맞이하는 극한들을 처리하는 게 이상적이라 느끼고 미적분은 '0/0꼴 극한에서의 미분계수의 정의 활용'을 사용할 수 없는 분모에 있는 함수의 미분계수가 0인 경우 (lim x->0 [tan(x)-sin(x)]/x^3 같은 거) 등에는 인수분해나 유리화 등을 통해 해결하는 것이 이상적이라 느낍니다. 물론 이 예시의 경우 '테일러 전개'를 활용해 다항함수의 극한 꼴로 해결할 수도 있지만 ㅋㅋㅋㅋ 그건 로피탈의 정리보다 더 한 교육과정 밖 내용이니까요! 근데 말하다보니 대표 함수들의 테일러 전개식을 활용한 함수의 극한 처리에 관한 자료를 만들어보는 것도 재밌을 것 같네요, 미적분에서 삼각함수의 극한 처리할 때 1-cos(x)를 x^2/2로 생각하는 것 같은 거도 사실 테일러 전개식에 기반해 설명하면 직관적으로 받아들일 수 있거든요)

연대클라스경제학은 위대합니다 ㅎㅎ
선생님 감사합니다. 혹시 미적도 가능하신가요?
자료의 핵심이 '절댓값 함수의 미분가능성', '구간 별 함수의 미분가능성', '곱함수의 미분가능성' 등 직접적으로 교과서에서 소개하진 않는 개념들에 대한 소개와 증명이라고 생각하는데 이는 미적분에도 똑같이 적용되기 때문에 어떤 내용을 다루는 것이 좋을지 잘 떠오르지 않습니다.
자료의 앞부분처럼 간단히 어떤 내용을 다루는지 정리하고 (수열의 극한에 관한 성질, 급수, 초월함수의 그래프와 극한, 초월함수 미분법, 치환/부분적분법, 구분구적법, 2차원 운동 등) 제가 공부할 때 중시했던 점들을 적어두는 건 마찬가지로 자료의 시작을 열기에 좋을 것 같아요.
중후반 내용의 경우 지금으로서는 초월함수의 극한을 다룰 때 sin(x), tan(x), e^x 같은 것들을 테일러 전개로 전개한 식을 테일러 정리, 테일러 급수에 기반해 소개하는 것, (다항함수)*(초월함수) 같은 식 꼴의 그래프를 미분없이 그리는 법 (대표적인 유형 기억), 치환적분법과 부분적분법 같은 것을 연습하기 위한 [sec(x)]^3 따위의 적분 정도가 떠오르는데 혹시 제가 다루었으면 하는 내용이 있을까요?
+첨언하자면 본글의 자료 뒷부분은 한완수 수1/수2 상중하에 기반해 서술했는데 미적분의 경우 제가 아직 하는 공부하지 않은 상태이고 상도 여러번 공부하진 못한 상태라 이번 자료만큼의 퀄리티 혹은 의미는 지니지 못할 것 같기도 합니다 ㅜ 비슷한 느낌으로 미적분도 제작해 올릴 수는 있겠으나 이번 자료만큼 깔끔하게 정리하기에는 제 내공이 부족할 것 같네요
초월함수를 제가 매끄럽게 다루지 못한다..? 라고 해야하나 그런 느낌이 있어서 한 번 질문을 해 보았습니다. 지금 올려주신 자료만으로도 충분히 감사합니다.
초월함수의 그래프를 매끄럽게 다루는 것과 관련해서는 이 영상을 참고하시면 좋을 것 같습니다.
https://youtu.be/xp7OG3xnC4w
감사합니다
수1이나 다른과목도 해주실수 있나요?
개인적으로 실전 개념과 그에 대한 증명을 공부하는 것이 학습에 큰 도움이 되는 경우가 수2와 미적이라 느끼긴 합니다만 고려해보겠습니다.