흔한 과고생의 [9월대비 MC THE MATH] 후기
게시글 주소: https://orbi.kr/00058382519
안녕하세요
9월대비 MC THE MATH 모의고사 리뷰 및 후기입니다!
[총평]
점수 : 100 (85분)
난도 : 6/10 (6,9평 정도)
최근 평가원 기조와 유사한 구성인 것 같습니다
선택 미적분은 쉬운 난이도로 구성되어 있고,
공통 4점 문항들이 어느정도 빡빡하게 구성되어 있습니다.
조건들 하나하나 유기적으로 연결되어 있어서 재밌게 풀 수 있었고,
다양한 주제에 대한 시사점들을 많이 담아내신 것 같습니다.
(항상 좋은 모의고사 만들어주셔서 감사합니다!!)
[세부 문항 리뷰]
#10
‘다항함수’라는 점을 이용하여 미정계수법으로 f에 대한 식을 바로 구할 수 있습니다
#11
극한의 존재성 조건을 이용하여 중근1, 단일근1 로 구성된 것임을 알 수 있고,
두가지 케이스를 각각 확인하여 보면 쉽게 구할 수 있습니다.
#12
(나) 조건에서 등차중항의 원리를 이용해 분자=0 이여야 한다는 내용을 도출할 수 있습니다.
이후 (가) 조건에서 약수관점으로 d를 구할 수 있습니다.
#13 (패스)
#14
‘부호변화’를 기준으로 살펴본다면 ㄷ 선지에서 가능한 f의 식이 하나로 귀결됩니다.
#15
어려운 해석을 요하지는 않으나 케이스를 잘 나누어 하나하나 계산해야하는 문제였습니다.
0,1을 기준으로 대소관계가 변한다는 점을 파악하고,
각각 케이스를 직접 계산해 주어야 합니다.
(직접 구하게 시킬 줄 몰랐는데 생각보다 계산이 많네요)
#20
(나) 조건을 조작하여 새롭게 함수를 정의하고, ‘증가’조건을 이용하는 문제입니다.
특히 (f-f’)’에서 (풀이에는 g’) 부호변화가 나타나면 안된다는 점을 통해 바로 중근임을 알 수 있교
이후 조건에 따라 계산하면 f를 구할 수 있습니다
#21
삼각형ABD를 그리고, 조건(AB=AD)와 원주각 성질로, 이 삼각형이 정삼각형임을 알 수 있고,
이후 각ACB를 기준으로 코사인법칙을 사용하면 AE를 구할 수 있습니다.
#22
(가)에서 f-f’ 형태의 조건으로 힌트를 준 것 같습니다.
(나) 조건을 정리하여 f-f’ 형태로 나타내면, 0,1,2,3에서 함수값이 동일함을 알 수 있고,
이를통해 식을 세운 뒤
(가)의 ‘세 실근’ 조건을 통해 4차함수가 3개의 실근을 가질 조건을 찾아주면 됩니다.
#26
R1이 바로 직각삼각형 ABD와 같다는 것을 파악하면 계산이 편해집니다.
공비를 구할때도 특수각의 성질로 쉽게 구할 수 있습니다
#27
묻는 값이 (a-1)^2임을 읽었으면
해당 형태가 나타나도록 식을 구성하여 답을 구할 수 있습니다
#28
함수는 쉽게 그릴 수 있죠.
변곡점에서의 접선이 주어진 케이스임을 파악한다면 답을 바로 도출할 수 있습니다.
(사실 감각적 직관 + 특수특수 로 변곡점임을 알 수도 있습니다)
#29
평행선이 주어졌으므로 엇각의 성질로 모든 각을 결정할 수 있습니다.
이후 삼각형OAB, 삼각형BCD 에서 사인법칙으로 변을 표현해 주면 답이 바로 나옵니다.
#30
조건에서 f를 0이상에서만 주어진 것으로 구간별 함수일 것이라고 파악할 수 있습니다.
g에서 인수논리로 연속함수가 되는 케이스를 생각할 수 있습니다.
중간 계산에 기함수 정적분 => 0 으로 계산이 수월해지도록 만들 수 있습니다.
[손풀이]
실제 푼 그대로라 조금 지저분할 수 있습니다. ㅎㅎ
(파블모 받고싶어요..!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
엠씨더맥스 노래도 불러주세요
헉! 잘 모르는데.. 연습해서 오겠습니다!
아니 과고생인데 수능수학까지 잘해버리네....ㄷㄷ
앜 아닙니다 ㅎㅎ
히히 감삼다
그저GOAT,,,
나랑 다른사람이야
거리.감 느껴져
흐엉
9평 망친 허수인걸요...
글씨 진짜 힐링되네 goat