흔한 과고생의 [9월대비 MC THE MATH] 후기
게시글 주소: https://orbi.kr/00058382519
안녕하세요
9월대비 MC THE MATH 모의고사 리뷰 및 후기입니다!
[총평]
점수 : 100 (85분)
난도 : 6/10 (6,9평 정도)
최근 평가원 기조와 유사한 구성인 것 같습니다
선택 미적분은 쉬운 난이도로 구성되어 있고,
공통 4점 문항들이 어느정도 빡빡하게 구성되어 있습니다.
조건들 하나하나 유기적으로 연결되어 있어서 재밌게 풀 수 있었고,
다양한 주제에 대한 시사점들을 많이 담아내신 것 같습니다.
(항상 좋은 모의고사 만들어주셔서 감사합니다!!)
[세부 문항 리뷰]
#10
‘다항함수’라는 점을 이용하여 미정계수법으로 f에 대한 식을 바로 구할 수 있습니다
#11
극한의 존재성 조건을 이용하여 중근1, 단일근1 로 구성된 것임을 알 수 있고,
두가지 케이스를 각각 확인하여 보면 쉽게 구할 수 있습니다.
#12
(나) 조건에서 등차중항의 원리를 이용해 분자=0 이여야 한다는 내용을 도출할 수 있습니다.
이후 (가) 조건에서 약수관점으로 d를 구할 수 있습니다.
#13 (패스)
#14
‘부호변화’를 기준으로 살펴본다면 ㄷ 선지에서 가능한 f의 식이 하나로 귀결됩니다.
#15
어려운 해석을 요하지는 않으나 케이스를 잘 나누어 하나하나 계산해야하는 문제였습니다.
0,1을 기준으로 대소관계가 변한다는 점을 파악하고,
각각 케이스를 직접 계산해 주어야 합니다.
(직접 구하게 시킬 줄 몰랐는데 생각보다 계산이 많네요)
#20
(나) 조건을 조작하여 새롭게 함수를 정의하고, ‘증가’조건을 이용하는 문제입니다.
특히 (f-f’)’에서 (풀이에는 g’) 부호변화가 나타나면 안된다는 점을 통해 바로 중근임을 알 수 있교
이후 조건에 따라 계산하면 f를 구할 수 있습니다
#21
삼각형ABD를 그리고, 조건(AB=AD)와 원주각 성질로, 이 삼각형이 정삼각형임을 알 수 있고,
이후 각ACB를 기준으로 코사인법칙을 사용하면 AE를 구할 수 있습니다.
#22
(가)에서 f-f’ 형태의 조건으로 힌트를 준 것 같습니다.
(나) 조건을 정리하여 f-f’ 형태로 나타내면, 0,1,2,3에서 함수값이 동일함을 알 수 있고,
이를통해 식을 세운 뒤
(가)의 ‘세 실근’ 조건을 통해 4차함수가 3개의 실근을 가질 조건을 찾아주면 됩니다.
#26
R1이 바로 직각삼각형 ABD와 같다는 것을 파악하면 계산이 편해집니다.
공비를 구할때도 특수각의 성질로 쉽게 구할 수 있습니다
#27
묻는 값이 (a-1)^2임을 읽었으면
해당 형태가 나타나도록 식을 구성하여 답을 구할 수 있습니다
#28
함수는 쉽게 그릴 수 있죠.
변곡점에서의 접선이 주어진 케이스임을 파악한다면 답을 바로 도출할 수 있습니다.
(사실 감각적 직관 + 특수특수 로 변곡점임을 알 수도 있습니다)
#29
평행선이 주어졌으므로 엇각의 성질로 모든 각을 결정할 수 있습니다.
이후 삼각형OAB, 삼각형BCD 에서 사인법칙으로 변을 표현해 주면 답이 바로 나옵니다.
#30
조건에서 f를 0이상에서만 주어진 것으로 구간별 함수일 것이라고 파악할 수 있습니다.
g에서 인수논리로 연속함수가 되는 케이스를 생각할 수 있습니다.
중간 계산에 기함수 정적분 => 0 으로 계산이 수월해지도록 만들 수 있습니다.
[손풀이]
실제 푼 그대로라 조금 지저분할 수 있습니다. ㅎㅎ
(파블모 받고싶어요..!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가기싫다 1
소레데모 이카나캬
-
이게 수학 국어보다 훨씬 1받기 어려운 같은데 타임어택 시발임 내가 공부를 너무 안했나
-
이제 파운데이션이랑 킥오프 끝나고 아이디어 들어갈려고 하는데 기출문제도 좀...
-
한평통 ㅠㅠ 0
8시30분까지 학교는 에바에요..
-
얼버기 8
-
그냥 스터디카페에서 인강 보면서 삼수하는데 바로 밑에 층에 독재 학원 있더라 6모...
-
고민되넹
-
한번의 0
눈빛으로사랑하기엔 우린 너무 여려
-
포기가 빠른 사람,하라면 하겟는데 괜히 수학 놓치는거보단 화학 놓아주는게 나한테 약일거 같다
-
ㅇㅂㄱ 4
-
내가 1등
-
커피 루틴 2
아침 일어나자마자 물과 함께 한잔 아침먹고 한잔 점심먹고 한잔 저녁먹고 한잔
-
ㅇㅂㄱ 8
일어났는데 기분이 영 좋지않아
-
사는곳이 학교랑 같은 구 이면??
-
??
-
네시간밖에 못잤는데 뭔 신나는 하르여
-
갑자기 춥다 2
기분탓이겠지
-
나는 근데 솔직히 인간관계에서 상처를 많이 안받는 사람인 줄 알았음 2
근데 몇번 당해보니까 상처를 많이 받긴 하더라 사람이면 다 그런 듯 물론 그렇다고...
-
오늘까지 일하면 금요일 까지 쉰다 그리고 금요일에 알바비 들어옴!
-
자라 2
네
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 일루미나티"음모론의 중심" XDK...
-
3모 땐 진짜 엄청 떨렸는데 5모는 하나도 안 떨리네
-
삼김 먹어야지 2
폐기먹기
-
좋.아 2
좋.아 좋은 아침이라는 뜻
-
자다깼는데 0
다시못자겠다 뭐하지 ㅋㅋㅋㅋ
-
뜨큥님?
-
안녕하세요 3
제가 밤샘을 성공할 수 있을까요?
-
씨팔 왜 지금 깬거야
-
잘수있을것같다 0
드디어 잠요정이 나에게!
-
이과고 확통같은 과목 진짜 싫어서 어차피 수능은 미적 기하 볼 고2인데 내신...
-
만들어야지!
-
그럼 한시간 후딱 지나갈듯
-
수면패턴 끄아악 14
2교시 수업이긴한데...
-
잠이안오네 2
-
어디까지인가요
-
근데 나도 잘 몰름 새로 생긴학과 사이언스뭐시기기반 자전 그런거 물어보면 모름
-
6시에 일어나야됨
-
자 축구봐보자잉 1
ㅇ.ㅇ
-
안돌아오는건가ㅠㅠ
-
살 부딪히는소리가 너무 나드라 미친놈들 공공장소에서 그러고 싶냐
-
오랜만입니다 1
진짜 수능이 없는 세계에 도착한 걸까요?
-
내여친 0
릿카쨩
-
2026 수능 대비하는데 2025 브릿지로 풀어도 괜찮을까요?
-
내남친 0
카카시
-
영어문법만 집중적으로 듣고 싶으면 어느분 강의 들어야해요? 대치동 현강 또는 인강 추천 부탁드려요
-
대치동 학원에서 도움받을수 있나요?
-
내일 뭐하지 0
뉴런 복습이나 해야되나 내일 점심은 돈가스
-
그냥... 새벽에는 뭘 하면 안됨
-
낼 닉변되네 1
벌써
-
자기싫다 0
자면 내일 또 가야 돼.....
엠씨더맥스 노래도 불러주세요
헉! 잘 모르는데.. 연습해서 오겠습니다!
아니 과고생인데 수능수학까지 잘해버리네....ㄷㄷ
앜 아닙니다 ㅎㅎ

갓....히히 감삼다
그저GOAT,,,
나랑 다른사람이야
거리.감 느껴져
흐엉
9평 망친 허수인걸요...
글씨 진짜 힐링되네 goat

실제 푼 그대로라 엉망인데.. 감사합니다